Investigating quantum interference in Drell-Söding process in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Xinbai Li (for the STAR Collaboration) University of Science and Technology of China

Abstract

Relativistic heavy-ion collisions offer a unique environment for exploring quan-1 tum interference at an unprecedented femtometer scale through photon-nuclear 2 interactions in photoproduction. In exclusive $\pi^+\pi^-$ production, the resonance and 3 continuum $\pi^+\pi^-$ components arise from distinct production mechanisms in the γA interaction. The continuum $\pi^+\pi^-$ photoproduction is dominated by Drell-Söding 5 process, in which a virtual π^+/π^- is diffraction-scattered on the nucleus. The 6 $\sim 5\%$ difference in the elastic scattering cross sections of π^-A and π^+A around a 7 γp center-of-mass energy of approximately 12 GeV in photoproduction in 200 GeV 8 Au+Au collisions at STAR may result in destructive interference. In contrast to 9 ρ^0 photoproduction, the Entanglement Enabled Spin Interference (EESI) in Drell-10 Söding process may differ due to the absence of the intermediate ρ^0 and the specific 11 dynamics of the virtual pion-nucleus interaction. 12

In this poster, we will present the first measurement of the diffractive p_T spec-13 trum and the spin interference pattern through the amplitude of the second order 14 final state angular cosine oscillation $A_{2\Delta\phi}$ measurement for the Drell-Söding process 15 in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV. The results indicate an obvious difference 16 in p_T spectrum compared to ρ^0 photoproduction. We also observe $A_{2\Delta\phi}$ with no 17 clear mass dependence for $p_T < 0.1 \text{ GeV/c}$ and a notablely stronger interference 18 at the same $M_{\pi^+\pi^-}$ in the Drell-Söding process compared to ρ^0 photoproduction, 19 which provides a unique opportunity to explore the effect of production mechanism 20 on the EESI. 21