Investigating quantum interference in Drell-Söding process in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Xinbai Li (for the STAR Collaboration) University of Science and Technology of China

Abstract

Relativistic heavy-ion collisions offer a unique environment for exploring quan-1 tum interference at an unprecedented femtometer scale through photon-nuclear 2 interactions in photoproduction. In exclusive $\pi^+\pi^-$ production, the resonance and 3 continuum $\pi^+\pi^-$ components arise from distinct production mechanisms in the γA interaction. The continuum $\pi^+\pi^-$ photoproduction is dominated by Drell-Söding 5 process, in which a virtual π^+/π^- is diffraction-scattered on the nucleus. The 6 $\sim 5\%$ difference in the elastic scattering cross sections of π^-A and π^+A around 7 a γp center-of-mass energy of approximately 12 GeV in photoproduction in 200 8 GeV Au+Au collisions at STAR may result in destructive interference. The En-9 tanglement Enabled Spin Interference (EESI) in Drell-Söding process may differ 10 from ρ^0 photoproduction due to the absence of the intermediate ρ^0 and the specific 11 dynamics of the virtual pion-nucleus interaction. 12

In this talk, we will present the first measurement of the diffractive p_T spectrum 13 and the spin interference pattern through the amplitude of the second order fi-14 nal state angular cosine oscillation $A_{2\Delta\phi}$ measurement for the Drell-Söding process 15 in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV. The results indicate that Drell-Söding 16 production is a softer process compared to ρ^0 photoproduction. We also observe 17 $A_{2\Delta\phi}$ with no clear mass dependence for $p_T < 0.1 \text{ GeV/c}$ and a notably stronger 18 interference at the same $M_{\pi^+\pi^-}$ in the Drell-Söding process compared to ρ^0 photo-19 production, which provides a unique opportunity to explore the effect of production 20 mechanism on the EESI. 21