Present and Future of Central Production with STAR Detector at RHIC
 Włodek Guryn BNL (for the STAR Collaboration)

- Process of central production - physics program at STAR with forward protons
- The present 2009 run preliminary results of Phase I program
- The near future Phase I program continued
- The future - Phase II program, large data samples for Central Production
- Summary

Processes with Tagged Forward Protons

QCD color singlet exchange: $\mathrm{C}=+1$ (Pomeron), $\mathrm{C}=-1$ (Odderon)

$p+p \rightarrow p+p$ elastic

$p+p \rightarrow p+X+p$
diffractive $X=$ particles, glueballs

$$
p+p \rightarrow p+X \text { SDD }
$$

Central Exclusive Production in Double Pomeron Exchange (DPE)

Method is complementary to:

- GLUEX experiment (2015)
- PANDA experiment (>2015)
- COMPASS experiment (taking data)
- BESIII

In the Double Pomeron Exchange (DPE) process each proton "emits" a Pomeron and the two Pomerons interact producing a massive system M_{x}
$\mathbf{M}_{\mathbf{X}}=\sqrt{\xi_{1} \xi_{2} s}$ invariant mass

For each proton vertex one has
t four-momentum transfer
$\xi=\Delta \mathrm{p} / \mathrm{p}$

$$
\text { where } M_{X}=\pi^{+} \pi^{-}, \chi_{c}\left(\chi_{b}\right), q q(j e t s), H(\text { Higgs boson), gg(glueballs) }
$$

The massive system could form resonances. We expect that because of the constraints provided by the double Pomeron interaction, glueballs, hybrids, and other states coupling preferentially to gluons, will be produced with much reduced backgrounds compared to standard hadronic production processes.

The Relativistic Heavy Ion Collider

RHIC is a QCD Laboratory:
Nucleus- Nucleus collisions (AuAu, CuCu...); Asym. Nucl. (dAu);
Polarized proton-proton; eRHIC - Future

RHIC: the world's first polarized pp collider

- Spin varies bunch by bunch
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- "Billions" of spin reversals during a fill with little if any depolarization

Implementation at STAR + pp2ppp

1. Need detectors to measure forward protons: \mathbf{t} - four-momentum transfer, $\xi=\Delta \mathrm{p} / \mathrm{p}, \mathrm{M}_{\mathrm{X}}$ invariant mass and;
2. Detector with good acceptance and particle ID to measure central system

- Phase I, present: low-t coverage - use existing equipment
- Phase II, future: higher-t coverage, large data samples - requires new construction

Implementation at RHIC - tag forward protons PP2PP Setup

Phys. Lett. B 579 (2004) 245-250, Phys. Lett. B 632 (2006) 167-172, Phys. Lett. B 647 (2007) 98-103 (Polish coauthors Chwastowski, Pawlik, Sandacz)

Current STAR detector in cross section

Large acceptance detector running since 2000

- High resolution tracking device: TPC in $-1<\eta<1,-\pi<\varphi<\pi$
- Forward rapidity gap veto
- FTPC: $2.5<|\eta|<4.2, B B C: 3.8<|\eta|<5.2$

Great Charged Particle ID in the STAR TPC

- High resolution tracking device: TPC in $-1<\eta<1,-\pi<\varphi<\pi$
- Excellent particle identification capability: TPC dE/dx, ToF
Particle Identification at STAR

Reconstructed hadrons: $K_{s}, \boldsymbol{\phi}, \Lambda, \equiv$, and Ω in Au+Au collisions at $\sqrt{\mathbf{s}_{\mathrm{NN}}}=39 \mathrm{GeV}$

dE/dx vs. rigidity compared with theoretical expectations

Particle identification with new barrel Time-of-Flight system.

Glueball Spectrum from Lattice QCD

Sparse spectrum!

New I=0 mesons starting with
$\mathbf{0}^{++} \quad 1.6 \mathrm{GeV}$
$\mathbf{0}^{-+}, 2^{++} \quad 2.3-2.5 \mathrm{GeV}$
No JPC -exotic glueballs until
2^{+-}at 4 GeV

Kinematic "filter" (dp_{T}) for " gg "

(F. Close et al./WA102)

- Coupling of the exchange particles to the final state mesons for gluon exchange ($\mathrm{small}_{\mathrm{dp}}^{\mathrm{T}}$) and quark exchange (large dp_{T})
- Spin-dependence of the coupling can be studied at RHIC

PLB 397339 (1997)
As predicted by Regge theory the diffractive cross section at RHIC is dominated by the Pomeron (gluonic) exchange, :
$\sigma_{R R} \sim s^{-2}$
$\sigma_{R P} \sim s^{-1}$
$\sigma_{\mathrm{PP}} \sim$ const. or s^{α} where $\alpha \sim(0.1)$

WA102 $\mathrm{f}_{0}(1500) \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

$$
\sigma\left(f_{1}\right)=7 \mu \text { barn }
$$

We are sensitive to this level of cross section
$\sigma\left(\mathrm{f}_{0}\right)=3 \mu$ barn

Figure 3: The 4π mass spectra (i) With $d P_{T}>0.5 \mathrm{GeV}$ exhibiting a clear $f_{1}(1285)$; (ii) $0.2<d P_{T}<0.5 \mathrm{GeV}$ (iii) $d P_{T}<0.2 \mathrm{GeV}$ where the $f_{1}(1285)$ has disappeared while the $f_{0}(1500)$ is seen more clearly.

Central Exclusive Production Process in DPE

$$
p_{1} p_{2} \rightarrow p_{1} \cdot M_{x} p_{2^{\prime}}
$$

- Exclusive process with "small" momentum transfer: $-t_{1}\left(p_{1} \rightarrow p_{1}\right)$ and $-t_{2}\left(p_{2} \rightarrow p_{2}{ }^{\prime}\right)$
- M_{X} is centrally produced, nearly at rest, through DPE process
- In pQCD, Pomeron is considered to be made of two gluons: natural place to look for gluon bound state
- $\mathrm{M}_{\mathrm{x}}\left(\sim 1-3 \mathrm{GeV} / \mathrm{c}^{2}\right) \rightarrow \pi^{+} \pi^{-}, \pi^{+} \Pi^{-} \Pi^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-}, \ldots$
- Lattice cal.: Lightest glueball $\mathrm{M}\left(0^{++}\right)=1.5-1.7 \mathrm{GeV} / \mathrm{c}^{2}$ (PRD73 2006)
- Search for glueball (gg) candidates in M_{x}
- Candidates with conventional quantum numbers: need to be studied in a wide kinematical range

Phase I: First Look at DPE Data

- Data taken with RP and ToF multiplicity triggers for the central process
- About 700k Central Production triggers collected during a special one week run at RHIC in 2009
- Data analysis is in progress

Run 9 Candidate Central Production Event

Triggers:

Phase I: First Look at DPE Data

(non exclusive channels)

- Tracks reconstructed in the STAR TPC
- Require two reconstructed tracks in opposite direction in the RPs
- Work in progress for identifying exclusive DPE events: rapidity gaps, PID, p_{T}-balance, missing-mass

Phase I Elastic Scattering: high-statistics measurement of A_{N} at $\sqrt{s}=200 \mathrm{GeV}$

$$
A_{N}(t)=\frac{\sigma^{\wedge}(t)-\sigma^{\downarrow}(t)}{\sigma^{\wedge}(t)+\sigma^{\downarrow}(t)}=C_{1} \phi_{\text {fip }}^{e n *} \phi_{\text {non }}^{\text {had }} \text { fip } p C_{2} \phi_{\text {flip }}^{\text {had* }} \phi_{\text {non-flip }}^{e m}
$$

- Statistical errors + systematic t-scale uncertainty (10\%) in the fit
- Higher- t reach planned from the upcoming $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$ (and with Phase II set-up) at RHIC

Phase II - The future

Simulation of proton transport done using HECTOR simulator, $\downarrow_{\mathrm{s}}=500 \mathrm{GeV}$

Acceptance and expected yields in M_{x}

- We assume the DPE cross section 140μ barn, and branching ratios as measured at the ISR (A. Breakstone et al., Z. Phys. C42, (1989) 387)
- Mass M_{x} calculated from the proton kinematics
- Use phase space to determine the decay of mass M_{x} in a particular channel
- Use STAR TPC acceptance to make sure that all decay products are seen.
- High-M M_{x} reconstruction is limited by PID (π / K separation up to $\sim 1.6 \mathrm{GeV} / \mathrm{c}$)

Event yields for 20 week run at 500 GeV

$$
\begin{array}{lr}
\pi^{+} \pi^{-} \pi^{+} \pi^{-}-2.7 \times 10^{6} \text { events } \\
\pi^{+} \pi^{-}- & 10.4 \times 10^{6} \text { events } \\
K^{+} K^{-}- & 0.8 \times 10^{6} \text { events }
\end{array}
$$

See P. Lebiedowicz, A. Szczurek at this conference PL B680 (2009) 459, PRD 81 (2010) 036003

Summary

1. A new rich diffractive physics program with tagged forward protons in polarized proton-proton scattering at RHIC, has been launched and its significant expansion has been proposed.
2. It will search for new physics, including glueballs, Odderon and sphalerons.
3. It will search for diffractive production of light and massive systems in double Pomeron exchange process. Possible Pomeron - Odderon interaction $=>\mathrm{J} / \psi$ production, C -odd glueball.
4. Not discussed here - systematic study of the spin dependence of elastic scattering, of the shape of the differential elastic cross section doldt in unexplored ranges of t and $\sqrt{ } \mathrm{s}$.

RHIC is an exciting, and complementary to other hadron colliders, place to do diffractive physics both in pp and HI
New collaborators are welcome!

Implementation at RHIC - STAR Detector

Great Charged Particle ID in the STAR TPC

- High resolution tracking device: TPC in $-1<\eta<1,-\pi<\varphi<\pi$
- Excellent particle identification capability: TPC dE/dx, ToF

Meson 2010
Włodek Guryn BNL
STAR \dot{c}^{22}

