Improved Particle Identification from Time of Flight Data in Polarized Proton-Proton Collisions

Minjun Baik of Abilene Christian University for STAR Collaboration

APS Division of Nuclear Physics: Undergraduates Oral Session VI

October 10th, 2024

This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

Introduction

- Relativistic Heavy Ion Collider (RHIC)
- Capable of colliding spin-polarized protons
 - Data at \sqrt{s} up to 510GeV
 - $\sqrt{s} \equiv \text{center-of-mass energy}$
- Resulting jets = key for proton spin structure
 - Jets probe colliding partons
 - Because such jets probe proton structure
 - Identifying particles in jets probes parton flavors
- Particle Identification (PID)
 - Mainly pion, kaon, proton, and electron

Solenoidal Tracker at RHIC (STAR)

- STAR measures traces of particles from the collision
- Two detectors used in PID:
 - Energy loss (dE/dx) in Time Projection Chamber (TPC)
 - \circ Particle time-of-flight (Δ t) in the TOF detector.
- TOF geometry
 - There are total 120 trays (unit of TOF system)
 - TOF covers approximately $|\eta| < 1$, where $\eta \equiv -\ln \left| \tan \left(\frac{\theta}{2} \right) \right|$
 - We selected data from $|\eta| < 0.33$
- Using data from the 2017 RHIC run
 - Polarized proton-proton data with $\sqrt{s} = 510$ GeV

Theory of Particle Identification

- Different physical traits result in distinct behaviors in 1/β vs momentum plots
- dE/dx and TOF \Rightarrow n_{σ}(TPc) and n_{σ}(TOF)
 - How do particles compare to predicted values
 - \circ n_{σ} helps extract high purity samples
 - We develop $n_{\sigma}(TOF)$ for this data set
- Fit the $1/\beta$ and $n_{\sigma}(TPC)$ distributions
 - \circ Extract the center and std of the pion's 1/ β distribution
 - \circ $n_{\sigma}^{}(Tpc)$ helps distinguish particles where 1/ β curves overlap.
- Fitting TOF distribution gives centers and σs

Methodology

• Fitting function for TOF: Student's T distribution

$$f(p) = \frac{A}{B(\frac{1}{2}, \frac{\nu}{2})} \sqrt{\frac{1}{\sigma^{2}(\nu-2)}} (1 + \frac{(p-\mu)^{2}}{\sigma^{2}(\nu-2)})^{\frac{-(\nu+1)}{2}}$$

- B =Beta function, p = momentum, v = DoF, μ = mean, σ = standard deviation
- To find optimal fitting...
 - Varied parameters like degrees of freedom(DoF)
 - Fitting methods: the log likelihood (LogL)

Varying DoF: σ and Yield

- Consistent σ and (raw) yields as DoF changes from 3.5 to 5.5
 - \circ Kaon and Proton σ changes approximately 10%
 - \circ Pion σ is very consistent and stable

Uncorrected yields

Fit Graphs

• Momentum of 1.49 GeV, with same DoF, center, and standard deviation

Kaon
Proton

Pion

- From 1.49 GeV, peaks starts to merge (total range is [0,3.6] GeV)
- Three different regions of $n_{\sigma}(Tpc)$
 - Enhanced each particle yields
- Fits are able to describe data well

2D fits

- Using full $n_{\sigma}(TPC)$ distribution gives better fit than 1D
 - \circ Better determines σ , optimal DoFs, and the small yield of electrons
- But, numerically expensive
 - Takes 5-6 times longer than 1D fit.

Tray 0 Mom Start 1500 (20 MeV Bin), |Eta|<.33

Guided 1D Fit Comparison

- Consistent result from particle yields of the guided 1D fits
 - Obtained from integrating the yield of the fittings
- Rescaled $n_{\sigma}(TOF)$ to have width of 1

Summary

- Identifying particles in jets are a valuable tool for probing nucleon spin structure.
- Identifying kaons, pions, and protons using $1/\beta$ and dE/dx
- Fit the $1/\beta$ and $n_{\sigma}(TPC)$ distributions
 - \circ 1/ β from TOF: Data can be fit well with Student's T function
 - \circ 2D fit of 1/β and n_σ(TPC) provide better fit, but numerically expensive
 - \circ 1D guided fit of 1/ β is consistent with 2D, and numerically cheap

Future work:

• Improve computation efficiency of 2D fits

Any questions?

This research was supported by US DOE MENP Grant DE-FG02-03ER4124311

Back up slide

Guided 1D Fits

- Devised for faster method of analysing individual trays
- We combine all ToF trays and fit them
 - \circ to extract an average DoF, kaon σ , and electron yields
- Electron yields \Rightarrow improvement on fit of the low momentum pion peak

