Studying path-length dependent energy loss using jet v_1 and event shape engineered high momentum probes in heavy-ion 25 collisions at $\sqrt{s_{NN}} = 200$ GeV by STAR

Motivation

Jet-medium interaction influenced by path length, L
Goal: Control system geometry at fixed energy density.
→ fix centrality, vary path length, by taking advantage of

bulk medium asymmetry in *x*-direction at finite rapidity^{1,2}
relation between final-state flow (q₂, 2nd-order reduced flow vector) and initial-state eccentricity (ε)^{3,4,5}
→ hard-probe yields with respect to event plane

The STAR Experiment

<u>Time Projection Chamber ((i)</u>**TPC**) ($|\eta| < 1$ (1.5)):

Charged-track reconstruction + momentum determination

<u>Zero Degree Calorimeter</u> (**ZDC**) (18 m): Triggering, EP angle (Ψ_1) <u>Event Plane Detector</u> (**EPD**):

West (2.15 < η < 5.09): q_2 determination East: EP angle (Ψ_2)

Methodology of jet v_1

- **Reconstruct jets:** Charged-particle jets with leading hadron $p_{\rm T} > 4$ GeV/*c*, clustered with anti- $k_{\rm T}$, radius R = 0.2, 0.3
- Subtract uncorrelated background: $p_{T,jet}^{reco} = p_{T,jet}^{raw} \rho A$, with ρ from k_T algorithm
- Determine Ψ_1 from ZDC and v_1 of jets as function of p_T , R

Methodology of event-shape engineering

- Determine Ψ_2 from EPD

Au+Au (Fig. 1) and isobar (Fig. 2) results consistent, as expected from similar initial asymmetry in AMPT
Charged jet and hadron show similar trends in overlap region
Extract ⟨p_x⟩ = 0.232 ± 0.068 (stat) ± 0.03 (sys) GeV/c for R = 0.2 and 10 < p_{T,jet}^{reco} < 12 GeV/c in 10 - 40 % Au+Au

 Select events with 10% highest/lowest q₂ (eccentricity), and compare charged-hadron spectra in-plane vs. outof-plane

Event-shape engineering

• *Fig.* 3: Interplay between elliptic and radial flow⁶ \rightarrow hardening of spectra at mid- $p_{\rm T}$. Ratio flattens at high-p_T

- $\Psi_2 \pm \pi/6$ ('in'), ($\Psi_2 + \pi/2$) $\pm \pi/6$ ('out')
- * Fig. 4: out/in raw ratio for mid-central low- vs. high- q_2 events
- * Corrected ratio diff. would indicate L-dep. E_{loss}

Summary

Results: first measurement of non-zero jet v₁ in heavy-ion collisions
Outlook: extract path length dependence; enhance signal with event-shape engineering of multiplicity fluctuations

Results: hardening of spectra in high-q₂ events; work ongoing to correct data for event-shape engineering analysis
Outlook: Apply resolution correction; determine full set of systematics (3-sub-event⁷, etc.)
¹S. Chatterjee, P. Bozek, PRL 120, 192301 (2018); A. Adil, M. Gyulassy PRC 72, 034907 (2005) ²STAR Collaboration, PRL 123, 162301 (2019)

³Schukraft, Timmins, Voloshin, PLB 719 (2013), 394-398 ⁴Beattie, Nijs, Sas, van der Schee, PLB 836 (2023), 137596 ⁵ALICE, PLB 851 (2024), 138584 ⁶ALICE, PRC 93 (2016) 3, 034916 ⁷Festanti, PhD thesis

