Recent Results and Future Prospects from the STAR Beam Energy Scan Program

Zachary Sweger University of California, Davis For the STAR Collaboration 57th Rencontres de Moriond QCD and High Energy Interactions La Thuile, Italy 31.03.2023

STAR

Supported in part by

The set a set of the

550 RHIC SPHENIX STAR LINAC NSRL TTP: EBIS BOOSTER AGS

Relativistic Heavy Ion Collider (RHIC)

- Located at Brookhaven National Lab (Long Island, New York)
- Mostly collides Au+Au but flexible (p+p, p+Au, O+O...) \bullet
- 2.4 mile rings in circumference with 6 intersection points ullet
- For Au+Au collisions, $\sqrt{S_{NN}} = 3 \text{ GeV}$ to 200 GeV 0

1/3/2023

Rencontres de Moriond 20

The STAR Detector

- Solenoidal magnet with 0.5T uniform field
- Time projection chamber (TPC)
- Time-of-flight (TOF) detector for precision particle identification at high momentum
- Electromagnetic calorimeters for jets, leptons, and photons

Phases of QCD Matter

QCD Phase Diagram

Rencontres de Moriond 2023

G. Odyniec, J. Phys.: Conf. Ser. 455 012037 (2013) B. Kimelman, Quark Matter (2022)

QCD Phase Diagram

Quarks-gluons are confined at low temperatures/densities

Rencontres de Moriond 2023

G. Odyniec, J. Phys.: Conf. Ser. 455 012037 (2013) B. Kimelman, Quark Matter (2022)

Phases of QCD Matter

QCD Phase Diagram

- Quarks-gluons are confined at low temperatures/densities
- Deconfined quark-gluon plasma phase at high temperatures

Beam Energy Scan and Fixed-Target Programs (BES-I, BES-II, FXT)

- Scanning phase of QCD matter in Au+Au collisions
- Searching for critical point, 1st-order phase transition, confinement onset...

Baryon Chemical Potential μ_B

Rencontres de Moriond 2023

G. Odyniec, J. Phys.: Conf. Ser. 455 012037 (2013) B. Kimelman, Quark Matter (2022) **Fixed-Target Program**

- 250 µm gold foil inserted into beam pipe, 2 cm below beam axis
- First physics runs at $\sqrt{s_{NN}}$ = 3.0 GeV and 7.2 GeV in 2018
- Now have data at 9 energies from $\sqrt{s_{NN}}$ of 3.0 7.7 GeV
- Acceptance shifts with respect to midrapidity (midrapidity outside acceptance at high end)

Fixed-Target Program

- 250 µm gold foil inserted into beam pipe, 2 cm below beam axis
- First physics runs at $\sqrt{s_{NN}}$ = 3.0 GeV and 7.2 GeV in 2018
- Now have data at 9 energies from $\sqrt{s_{NN}}$ of 3.0 7.7 GeV
- Acceptance shifts with respect to midrapidity (midrapidity outside acceptance at high end)

Femtoscopy → Size/Shape of Hot Nuclear Source

- Interference of produced particles encodes shape of source in 3D (R_{out}/R_{side}/R_{long})
- Inspired by Hanbury Brown Twiss (HBT) interferometry for measuring the size of stars in astronomy ^{R. Hanbury Brown, R.Q. Twiss,} DOI: 10.1080/14786440708520475 (1954)

Heavy-Ion Collision Interaction Region

HBT Interferometry

31/3/2023

Femtoscopy → Size/Shape of Hot Nuclear Source

- Interference of produced particles encodes shape of source in 3D (R_{out}/R_{side}/R_{long})
- Inspired by Hanbury Brown Twiss (HBT) interferometry for measuring the size of stars in astronomy ^{R. Hanbury Brown, R.Q. Twiss,} DOI: 10.1080/14786440708520475 (1954)
- Peak in R_{out}/R_{side} might probe first-order phase transition!

Heavy-Ion Collision Interaction Region

- Leptons can probe temperature deep within fireball
- Invariant mass of dileptons determines their origin

- Leptons can probe temperature deep within fireball
- Invariant mass of dileptons determines their origin
- Intermediate-mass region (IMR) → temperature of fireball
- Low-mass region (LMR) \rightarrow temperature at chemical freeze-out

Z. Liang, M. Lisa & X. Wang, Nuclear Physics News, 30:2, 10-16 (2020)

- Leptons can probe temperature deep within fireball
- Invariant mass of dileptons determines their origin
- Intermediate-mass region (IMR) → temperature of fireball
- Low-mass region (LMR) \rightarrow temperature at chemical freeze-out

• Elliptic flow (v_2): anisotropy of collision geometry \rightarrow particles emitted asymmetrically

Elliptic Flow

B. Betz, arXiv:0910.4114 (2009)

- Elliptic flow (v₂): anisotropy of collision geometry \rightarrow particles emitted asymmetrically
- Motivation: we infer flow of fireball constituents from detected particles
- Do fireball constituents flow like quarks or like hadrons?
- NCQ scaling: Number of Constituent Quark scaling → elliptic flow of hadrons scales with their number of valence quarks.

B. Betz, arXiv:0910.4114 (2009)

Hadrons

Freezing Out

- Elliptic flow (v_2): anisotropy of collision geometry \rightarrow particles emitted asymmetrically
- Motivation: we infer flow of fireball constituents from detected particles
- Do fireball constituents flow like quarks or like hadrons?
- NCQ scaling: Number of Constituent Quark scaling → elliptic flow of hadrons scales with their number of valence quarks. NOT at 3 GeV! 3GeV fireball constituents seem to be hadrons!

Rencontres de Moriond 2023

 Protons shifted from beam rapidity (stopping)

Proton Number by Rapicity

- Protons shifted from beam rapidity (stopping)
- Less stopping \rightarrow softer equation of state

Proton Number by Rapidity

- Protons shifted from beam rapidity (stopping)
- Less stopping \rightarrow softer equation of state

Proton Number by Rapidity

- Protons shifted from beam rapidity (stopping)
- Less stopping \rightarrow softer equation of state
- New 3 GeV measurement

Proton Number by Rapidity

- Protons shifted from beam rapidity (stopping)
- Less stopping \rightarrow softer equation of state
- New 3 GeV measurement
- Keep an eye out for remaining fixedtarget measurements from STAR!
 Proton Number by Rapidity

Critical Fluctuations

T. Csorgo, arXiv:0903.0669 (2009)

High Moments Analyses \rightarrow Proton Kurtosis and Critical Point!

- Non-monotonic collision-energy dependence of baryon-number kurtosis predicted near critical point
- Counting (anti)protons in each event (N)
- Measuring mean, variance, skewness, and kurtosis $\kappa = [\langle (\delta N)^4 \rangle / \sigma^4] 3$ ($\delta N = N \langle N \rangle$)
- BES-I observed non-monotonicity with 3.1σ significance

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Zachary Sweger

BES-I Kurtosis Results

J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 126, 092301

Proton Kurtosis

• New 3 GeV data point

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023). Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Rencontres de Moriond 2023

Proton Kurtosis

- New 3 GeV data point
- FXT Program will cover gap (my analysis!)

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023). Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Rencontres de Moriond 2023

Proton Kurtosis

- New 3 GeV data point
- FXT Program will cover gap (my analysis!)
- High-statistics data re-collected at BES-I energies below 27 GeV (BES-II)

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023). Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Rencontres de Moriond 2023

31/3/2023

Hypernuclei \rightarrow An Interesting Aside to the Phase Diagram

• Replace one nucleon by a nucleon with strangeness (Λ or Ξ)

Hypernuclei \rightarrow An Interesting Aside to the Phase Diagram

- Replace one nucleon by a nucleon with strangeness (Λ or Ξ)
- At fixed-target energies, RHIC is essentially a hypernuclei factory!

Hypernuclei \rightarrow An Interesting Aside to the Phase Diagram

- Replace one nucleon by a nucleon with strangeness (Λ or Ξ)
- At fixed-target energies, RHIC is essentially a hypernuclei factory
- STAR observed anti-hyper-hydrogen-4 for the first time!

Looking Forward

- STAR recently finished our BES-II/FXT data-taking
- In the coming months to years, we expect to publish high-precision results on Au+Au collisions from 3.0 to 27 GeV
- Keep an eye out for new results on
 - Hypernuclei searches
 - Femtoscopy and 1st-order phase transition
 - > Dileptons mapping fireball temperature
 - Flow mapping onset of NCQ scaling
 - Proton stopping and a softening of the equation of state
 - Proton high-moments searching for signatures of QCD critical point

