

# **Collectivity in Heavy-Ion Collisions at High Baryon Density from STAR BES-II**



- Li-Ke Liu for the STAR Collaboration CCNU, GSI
- 59<sup>th</sup> Rencontres de Moriond 2025 **QCD & High Energy Interactions**







- 1) Motivation
- 2) Experimental Setup
- 3) Results and Discussion
  - I) Directed flow  $(v_1)$  measurements
  - II) Elliptic flow  $(v_2)$  measurements
- 4) Summary

2025/04/05



Motivation



A. Bazavov et al., Phys. Rev. D 85, 054503 (2012); K. Fukushima and C. Sasaki, Prog. Part. Nucl. Phys, 72, 99 (2013)

2025/04/05

STAR

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

RHIC FXT: 3-7.7 GeV  $\mu_B$ : 760-420 MeV

RHIC 200 GeV and LHC
Small viscosity, high temperature
Evidence of Quark-Gluon Plasma

Beam energy scan program
Locate the first-order phase boundary
Search for Critical Point





### **STAR Beam Energy Scan**

| Au+Au Collisions at RHIC |                                   |         |               |       |            |                   |                                   |         |                |       |                |
|--------------------------|-----------------------------------|---------|---------------|-------|------------|-------------------|-----------------------------------|---------|----------------|-------|----------------|
| Collider Runs            |                                   |         |               |       |            | Fixed-Target Runs |                                   |         |                |       |                |
|                          | √ <b>S</b> <sub>NN</sub><br>(GeV) | #Events | $\mu_B$       | Ybeam | run        |                   | √ <b>S</b> <sub>NN</sub><br>(GeV) | #Events | $\mu_B$        | Ybeam | run            |
| 1                        | 200                               | 2000 M  | <b>25</b> MeV | 5.3   | Run-14, 16 | 1                 | 13.7 (100)                        | 50 M    | 280 MeV        | -2.69 | Run-21         |
| 2                        | 62.4                              | 46 M    | 75 MeV        |       | Run-10     | 2                 | 11.5 (70)                         | 50 M    | 320 MeV        | -2.51 | Run-21         |
| 3                        | 54.4                              | 1200 M  | 85 MeV        |       | Run-17     | 3                 | 9.2 (44.5)                        | 50 M    | 370 MeV        | -2.28 | Run-21         |
| 4                        | 39                                | 86 M    | 112 MeV       |       | Run-10     | 4                 | 7.7 (31.2)                        | 260 M   | 420 MeV        | -2.1  | Run-18, 19, 20 |
| 5                        | 27                                | 585 M   | 156 MeV       | 3.36  | Run-11, 18 | 5                 | 7.2 (26.5)                        | 470 M   | 440 MeV        | -2.02 | Run-18, 20     |
| 6                        | 19.6                              | 595 M   | 206 MeV       | 3.1   | Run-11, 19 | 6                 | 6.2 (19.5)                        | 120 M   | 490 MeV        | 1.87  | Run-20         |
| 7                        | 17.3                              | 256 M   | 230 MeV       |       | Run-21     | 7                 | 5.2 (13.5)                        | 100 M   | 540 MeV        | -1.68 | Run-20         |
| 8                        | 14.6                              | 340 M   | 262 MeV       |       | Run-14, 19 | 8                 | 4.5 (9.8)                         | 110 M   | 590 MeV        | -1.52 | Run-20         |
| 9                        | 11.5                              | 235 M   | 316 MeV       |       | Run-10, 20 | 9                 | 3.9 (7.3)                         | 120 M   | 633 MeV        | -1.37 | Run-20         |
| 10                       | 9.2                               | 160 M   | 372 MeV       |       | Run-10, 20 | 10                | 3.5 (5.75)                        | 120 M   | 670 MeV        | -1.2  | Run-20         |
| 11                       | 7.7                               | 104 M   | 420 MeV       |       | Run-21     | 11                | 3.2 (4.59)                        | 200 M   | 699 MeV        | -1.13 | Run-19         |
|                          |                                   |         |               |       |            | 12                | <b>3.0</b> (3.85)                 | 2000 M  | <b>760</b> MeV | -1.05 | Run-18, 20     |
|                          |                                   |         |               |       |            |                   |                                   |         |                |       |                |

2025/04/05

The widest map of the QCD phase diagram

 $3 < \sqrt{s_{\rm NN}} < 200 \,{\rm GeV}; 760 > \mu_B > 25 \,{\rm MeV}$ 





### **Experimental Setup**



### STAR Detector Upgrade:

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu



## **Anisotropic flow**

Anisotropies in particle momentum distributions relative to the reaction planes or symmetry planes Initial spatial anisotropy  $\rightarrow$  Pressure gradient  $\rightarrow$  Momentum space anisotropy



A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998) P. Danielewicz, R. Lacey, Science 298 (2002) STAR Collaboration, Phys. Rev. Lett. 118, 212301 (2017) 2025/04/05 59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi}\frac{d^{2}N}{p_{T}dp_{T}dy}\left(1 + \sum_{1}^{\infty} 2v_{n}\cos\left[n\left(\phi - \psi_{r}\right)\right]\right)$$
$$v_{1} = \left\langle\cos\left(\phi - \psi_{r}\right)\right\rangle = \left\langle\frac{p_{x}}{p_{T}}\right\rangle \quad \text{directed flow}$$
$$v_{2} = \left\langle\cos\left[2(\phi - \psi_{r})\right]\right\rangle = \left\langle\frac{p_{x}^{2} - p_{y}^{2}}{p_{x}^{2} + p_{y}^{2}}\right\rangle \quad \text{elliptic flow}$$

- 1) Equation of State of the medium
- 2) Constituent interactions and degree of freedom



## **Motivation: Anti-flow of kaons**



1) Bounce-off: Positive flow in positive rapidity 2) Au+Au 3.83 GeV: anti-flow of kaon at low  $p_T$  (< 0.7 GeV/c)  $\rightarrow$  Kaon potential ?

2025/04/05

STAR



# **Motivation: Elliptic flow**



1) 200 GeV: Partonic collectivity 2) 3.0 GeV: Hadronic interaction dominates

a)

2025/04/05

STAR

Ā

0

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu



3) Change of degree of freedom:  $3.0 \rightarrow 7.7 \text{ GeV}$ ?





### **Particle Identification**

### TPC



### Good particle identification capability based on TPC dE/dx and TOF m<sup>2</sup>

2025/04/05

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu



## **Particle Acceptance**





A. Banerjee, I. Kisel and M. Zyzak, Int. J. Mod. Phys. A 35, 2043003 (2020) 2025/ 04/ 05 59<sup>th</sup> Rencont

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

## **Rapidity dependence of v**<sub>1</sub>

STAR: CPOD2024, SQM2024



59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

2025/04/05

STAR

Measurements of v<sub>1</sub> vs. rapidity for  $\pi^{\pm}$ ,  $K^{\pm}$ ,  $K_{S}^{0}$ , p,  $\Lambda$  at 3.0, 3.2, 3.5, and 3.9 GeV



### **Anti-flow of Kaon**

### E895 Collaboration, Phys. Rev. Lett. 85, 940 (2000)



1) 3.9 GeV: anti-flow observed for  $K_S^0$  at  $p_T < 0.7$  GeV/c 2) Positive directed flow slope of  $K_S^0$  at  $p_T > 0.7$  GeV/c **Strong p**<sub>T</sub> **dependence of**  $K_{S}^{0}$  **v**<sub>1</sub> **slope** 

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

2025/04/05

STAR

### **STAR: CPOD2024, SQM2024**





## **p**<sub>T</sub> dependence of v<sub>1</sub> slope

### STAR: CPOD2024, SQM2024



2025/04/05

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

Ĭ



Anti-flow could be explained by shadowing 2) effect from spectator, kaon potential is not necessary





# **Energy dependence of v**<sub>1</sub> **slope**

### **STAR: CPOD2024, SQM2024**



2025/04/05

STAR

- $v_1$  slope of baryons drops as collision energy increases
- 2) JAM with baryon mean field better describes data
  - For both p and  $\Lambda$ , Baryon mean field is important at high baryon density region



### Anisotropic flow

$$v_1 = \cos(\phi - \psi_r) = \left\langle \frac{p_x}{p_T} \right\rangle$$

### v<sub>1</sub> reflect asymmetry along X direction

2025/04/05

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

Ζ

Pz





v<sub>2</sub> reflect asymmetry on X-Y plane



# p<sub>T</sub> dependence of v<sub>2</sub> at 3.0 - 4.5 GeV

STAR: CPOD2024, **SQM2024** 

STAR



- 2) Hadronic models fit 3.0 GeV data, while AMPT-SM fails, AMPT-SM matches 4.5 GeV data, while hadronic models underestimate

2025/04/05

1) As collision energy is increasing, passing time reduced and the effect of shadowing is diminished



# NCQ scaling of v<sub>2</sub> at 3 - 7.7 GeV

STAR: CPOD2024, SQM2024



1) NCQ scaling completely breaks below 3.2 GeV 2) NCQ scaling becomes better gradually from 3.2 to 4.5 GeV

2025/04/05

STAR

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu



### **Energy dependence of** $\langle v_2 \rangle$



2025/04/05

- 1) Negative to positive flow:  $3 \rightarrow 4.5$  GeV
- 2) NCQ scaled v<sub>2</sub> ratio of  $p/K^+$  close to 1 at 3.9 and 4.5 GeV, while deviating largely from 1 at 3.2 GeV
  - Partonic interactions become more important at 4.5 GeV

STAR Collaboration, Phys. Rev. C 88, 14902 (2013), Phys. Rev. C 103, 34908 (2021) 59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu









- - Shadowing effect is important, kaon potential is not necessary to reproduce kaon anti-flow

- 2) NCQ scaling breaks at 3 and 3.2 GeV, gradually restores from 3 to 4.5 GeV
  - **As collision energy increases, passing time decreases, and shadowing effect diminishes**
  - Partonic interactions become more important at 4.5 GeV

2025/04/05

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

### 1) Anti-flow for $K_S^0$ , $K^{\pm}$ and $\pi^+$ observed at low $p_T (\leq 0.6 \text{ GeV/c})$ in 3 - 3.9 GeV collisions









- Explore the QCD phase diagram

Results from more datasets will presented in QM2025

2025/04/05

59<sup>th</sup> Rencontres de Moriond 2025, Li-Ke Liu

• BES-II: enhanced statistics, upgraded detectors, precise measurements

