Supported in part by

irfu

Cea

Recent Highlights from STAR BES Phase II

Dylan Neff (for the STAR Collaboration) CEA Saclay, Paris, FR

4/6/2024

STAR

Moriond 2024

4/6/2024

Where Are We on the QCD Phase Diagram?

 $2\mu_B$

Rapidity Dependence of Chemical Freeze-Out

- Rapidity density of $\pi^{\pm}, K^{\pm}, p, \bar{p}$ measured at $\sqrt{s_{NN}}$ =27 GeV
- Rapidity dependence of chemical freeze-out parameters
 - $\Delta \mu_{\rm B} \approx 25$ MeV for $\Delta y = 1$ from baryon stopping
 - $\circ \quad \Delta \mu_{\mathsf{S}} \approx$ 10 MeV for $\Delta \mathsf{y}$ =1 from associated production $(p + N o \Lambda + K^+ + N)$

μ_s [MeV]

Thermal Dielectrons

Dylan Neff **STAR** Moriond 2024

Energy Dependence of $J/\psi R_{AA}$

- R_{AA} shows no significant energy dependence at RHIC for similar $\langle N_{participants} \rangle$
- No significant energy dependence of $J/\psi R_{AA}$ in central collisions is observed within uncertainties from 7.7 up to 200 GeV.
 - \circ $\:$ Interplay of dissociation and regeneration effects from RHIC to LHC energies.

Electromagnetic Field Effects in QGP

10 / 15

The Chiral Magnetic Effect (CME)

Search for the Chiral Magnetic Effect

Event Shape Selection → Extrapolate to zero flow to reduce CME background

Z. Xu et al Phys. Rev. C 107, L061902 Z. Xu et al, PLB 848(2024)138367

12 / 15

4/6/2024

13 / 15

Azimuthally Sensitive Femtoscopy

OL: Out-Long Tilt measured in both SL: Side-Long transverse directions

Summary

- □ STAR is a versatile detector!
 - $\circ~$ Sensitivity of thermal μ_{B} and μ_{S} to rapidity measured
 - Hint of decreasing thermal dielectron yield with increasing $\mu_{\rm B}$
 - $J/\psi R_{AA}$ shows no dependence on energy from 7.7 to 200 GeV
 - Disappearance of NCQ scaling at 3.2 GeV → suggests hadronic matter
 - $\circ \quad \mbox{Charge dependent v}_1 \mbox{ measurements consistent with dominance of Faraday+Coulomb effect in peripheral collisions}$
 - $\circ~$ Possible hint of Chiral Magnetic Effect at 14.6 and 19.6 GeV
 - Fireball size and tilt measured with femtoscopic correlations
- □ High statistics data at low energies helps complete the QGP story
- □ The fixed target program extends STAR's reach into the QCD phase diagram

Summary

- □ STAR is a versatile detector!
 - $\circ~$ Sensitivity of thermal μ_{B} and μ_{S} to rapidity measured
 - Hint of decreasing thermal dielectron yield with increasing $\mu_{\rm B}$
 - $J/\psi R_{AA}$ shows no dependence on energy from 7.7 to 200 GeV
 - Disappearance of NCQ scaling at 3.2 GeV → suggests hadronic matter
 - $\circ \quad \mbox{Charge dependent v}_1 \mbox{ measurements consistent with dominance of Faraday+Coulomb effect in peripheral collisions}$
 - $\circ~$ Possible hint of Chiral Magnetic Effect at 14.6 and 19.6 GeV
 - Fireball size and tilt measured with femtoscopic correlations
- □ High statistics data at low energies helps complete the QGP story
- □ The fixed target program extends STAR's reach into the QCD phase diagram

Thanks for your attention!

Backup

d-A Correlation Measurement

d-A Correlation Measurement

Constrained fit separated two spin states in d- $\!\Lambda$

With Bethe formula ${}^{3}_{A}H B_{A} = [0.04, 0.33] (MeV) @$ 95% CL, consistent with the world average

Search for the Chiral Magnetic Effect

Event Shape Selection → Extrapolate to zero flow to reduce CME background

Use Spectator Plane Ψ₁ from EPD to mitigate nonflow.
Spectators are more correlated with magnetic field.

• Restored signal: $\Delta \gamma_{ESS}^{112} = Intercept \times (1 - v_2)^2$

> Z. Xu et al Phys. Rev. C 107, L061902 Z. Xu et al, PLB 848(2024)138367

BES-II Result:

3σ significance found for the intercept at 14.6 and 19.6 GeV.
Approaching 7.7 GeV, data indicate no chiral symmetry?
Intercept of BKG-indicator Δγ¹³² is consistent with zero.

