Supported in part by

Ting Lin (林挺), for the STAR Collaboration Shandong University (山东大学)

QCD & High Energy Interactions

STAR

March 31- April 7, 2024, La Thuile, Italy

Fundamental Questions Regarding Proton Spin

• How do quarks and gluons conspire to provide the proton's spin 1/2 ?

- What is the role of gluons and sea quarks?
- What is the size of the orbital angular momentum?
- What is the dynamic structure of the proton?
 - How do we go beyond longitudinal parton distribution functions to map out the 3D structure?
 - Can we visualize color interactions in QCD?

TMD Parton Distribution Functions

TMD Handbook, arXiv:2304.03302 [hep-ph]

- Image the transverse and longitudinal (2+1d) structure of the nucleon and nuclei;
 - Tomography of the nucleon;
- Access to transverse momenta at non-perturbative scales;
 - Probe at the confinement scale;
- Exhibit correlations arising from spin-orbit effects.

Moriond 2024

Relativistic Heavy Ion Collider (RHIC)

- Spin pattern changes from fill to fill with little depolarization;
- Siberian snakes preserve the polarization;
- Spin rotators select spin orientation;
- proton-Carbon (pC) polarimeters and hydrogen gas jet (H-Jet) measure the polarization.

Solenoidal Tracker At RHIC (STAR)

STAR Data and Kinematic Coverage

Year	2011	2012		2015		2017	2022	2024
\sqrt{s} (GeV)	500	200		200		510	508	200
$L_{int} (pb^{-1})$	23	22	рр	pAu	pAl	320	400	TBD
			52	0.45	1			
Polarization	53%	57%	57%	60%	54%	55%	53%	TBD

- STAR covers a similar range in momentum fraction to that of SIDIS experiments but at much higher Q^2 ;
- 200 GeV results provide better statistical precision at larger momentum fraction regions while 500 GeV results probe lower values.
- These two different energies provide experimental constraints on evolution effects and insights into the magnitude and nature of TMD observables that will be measured at EIC.

Transverse Single-Spin Asymmetry

$$p^{\uparrow} + p \rightarrow \text{Jet} + \pi^{\pm} + X$$

• Each TMD PDF is convoluted with a fragmentation function and appears with a independent harmonic modulations (azimuthal asymmetry amplitudes).

Jet Reconstruction

Anti-K_T Algorithm:

- Radius = 0.6 for pp200, and 0.5 for pp500;
- Less sensitive to underlying event and pile-up effects;
- Used in both data and simulation;

Simulation:

• PYTHIA 6.4 with STAR adjustment of Perugia 2012;

Three Simulation Levels :

- Parton hard scattered partons involved in 2->2 hard scattering event from Pythia;
- Particle partons propagate and hadronize into stable and color-neutral particles;
- Detector detector response to the stable particles.

8

Data and Simulation Comparison

STAR, PRD 106, 072010 (2022)

- Jets are reconstructed from both data and simulation;
- Very good agreement between data and simulation for various jet comparisons;
- Detector conditions are well understood and reproducible.

Inclusive Jet Cross Section

Inclusive jet cross section $d^{2}\sigma/(dp_{T}d\eta)$, pb/(GeV/c) 10¹⁰ STAR Run 2012 Preliminary (stat. uncertainty) Jet Energy Scale syst. uncertainty for EMC 10⁹ Unfolding syst. uncertainty (simulation statistics) NLO pQCD \otimes CT14nlo ($\mu = p_T^{max}$) $\times f_{had.}$ 10⁸ Pythia 6.4.28 @ Perugia 2012, PARP(90) = 0.213 *pp* at \sqrt{s} = 200 GeV, $|\eta| < 0.8$, anti-k_T, *R* = 0.6 10⁷ 10% luminosity uncertainty not shown 10⁶ 10⁵ 10⁴ 10³ 10² 10¹ 2 Ratio to data 1.5 0.5 0 20 25 30 35 45 50 10 40 15 jet $p_{\rm T}$, GeV/c

- The largest uncertainty is from the EM calorimeter response;
- The measured jet cross sections are in good agreement with NLO pQCD prediction.

 A_N for Inclusive Jet

- Inclusive jet A_N are sensitive to the Sivers function via the twist-3 correlators;
- Free of final-state contributions.

Moriond 2024

Moriond 2024

Ting Lin - Shandong University

12

New 510 GeV Results

- The asymmetries agree at $0.06 < x_T < 0.2$, Q^2 differs by a factor of 6;
- Collins asymmetry has a weak energy dependence in hadronic collisions;
- z and j_T dependences of the Collins FF are closely related.

 A_N for K^{\pm} and Proton in Jets

STAR, PRD 106, 072010 (2022)

- K^+ , with contribution from favored fragmentation of u quarks, has similar magnitude of asymmetries to π^+ ;
- K^- , which is produced by unfavored fragmentation, has asymmetries that are consistent with zero;
- Proton and anti-proton's asymmetries are all consistent with zero at one sigma level.

 A_N for π^0 in Jets

STAR, PRD 103, 092009 (2021)

- Small Collins asymmetries at both energies;
- Cancellation of the Collins effect of the u/d quark.

Outlook

Moriond 2024

Mid Rapidity

Forward Rapidity

-1.5 < η < 1.5

Physics Topics:

Improve statistical precision:

Sivers effect in dijet and W/Z

production;

- Collins effect for hadrons in jets;
- Transversity and IFF;
- Diffractive studies for spatial imaging of nucleon;
- \succ GPD E_g through UPC J/ Ψ ;
- Nuclear PDF and fragmentation function.

$2.5 < \eta < 4$

Physics Topics:

- TMD measurements at high x
 - Transversity, Collins;
 - Sivers through DY and jets
- > UPC J/ Ψ GPD at forward rapidity;
- Nuclear PDFs and FF;
- R_{pA} for direct photons and DY;
- Gluon Saturation through dihadrons, γ-Jets, di-jets.
 All of these measurements are critical to the scientific success of EIC to test universality and factorization.
- Large p+p 508 GeV sample from 2022 currently under analyses (w/ forward upgrades);
- Upcoming p+p in 2024 and possibly p+Au in 2025.

- Significant progress towards the understanding of the internal spin structure of nucleon at STAR;
 - Complementarity of 3D structure of nucleon measurements from lepton scattering and hadron-hadron collisions;
- Many new impactful results from transverse spin measurements;
 - Made the first observation of transversity, Sivers and Collins effect in pp collisions;
- Unique forward and midrapidity physics with recent upgrades;
 - Overlap kinematic coverage with EIC;
 - Establish the validity and limits of factorization and universality.