

Higher harmonic flow of φ meson in STAR at RHIC

Mukesh Kumar Sharma (for the STAR Collaboration) University of Jammu, Jammu, INDIA

OUTLINE:

- ✓ Introduction and Motivation
- ✓ STAR Detector and Data set
- ✓ Analysis Method
- ✓ Results
- ✓ Summary

DAE HEP Symposium-2014, IIT Guwahati

Introduction: Azimuthal anisotropy

- $\frac{dN}{d\phi} \propto \frac{1}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi \psi_R)) \right]$ $\phi = \tan^{-1} \left(\frac{P_y}{P_x} \right)$ $v_n = \langle \cos[n(\phi \psi_R)] \rangle$
- ψ_R is the azimuthal angle of the reaction plane (spanned by impact parameter and beam direction)
- v₂, v₃ and v₄ are called elliptic, triangular and quadrangular flow

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671(1998).

- ϕ meson has small hadronic interaction cross section. Thus ϕ meson v_n is less affected by later stage hadronic interaction. Hence ϕ meson is a clean probe to study the medium created in the early stage of collisions.
- The ratios between various harmonics can be used to understand the properties of the system created in heavy-ion collisions.

Coalescence Model

$$\frac{v_{4,M}(2p_{T})}{v_{2,M}^{2}(2p_{T})} \approx \frac{1}{4} + \frac{1}{2} \frac{v_{4,q}(p_{T})}{v_{2,q}^{2}(p_{T})}$$

Where $v_{n,q}(p_T) = k v_{2,q}^{n/2}(p_T)$ If k=1 $\frac{v_{4,M}(2p_T)}{v_{2,M}^2(2p_T)} \approx 0.75$

L. W. Chen et al., Phys. Rev. C 73, 044903 (2006). J. Adams et al. (STAR Collabration), Nucl. Phys. A 757,102 (2005).

Hydro Model

$$\frac{V_4}{V_2^2} = 0.5$$

 $\frac{v_3}{v_2}$ = Constant at high p_T

C. Lang et al., Eur. Phys. J. C 74 (2014) 2955.

STAR Experiment and Data Set

Magnetic field 0.5 Tesla Full azimuthal coverage $(0, 2\pi)$ $|\eta| < 1.0$ for TPC and $|\eta| < 0.9$ for TOF

Data Set	Vertex Cut	Trigger	No. of events
AuAu 200 GeV (Run 11)	Vz < 30 cm Vr < 2 cm	MinBias	560 Million

Particle Identification with STAR TPC and TOF

🛛 ТРС

- Full azimuthal coverage (0, 2π)
- Identifies kaon upto p= 0.65 GeV/c
- Bethe Bloch Formula

$$-\langle \frac{dE}{dx} \rangle \sim A \left(1 + \frac{m^2}{p^2} \right)$$

Particle identifies using

$$N\sigma = \frac{1}{R} \times \log\left(\frac{dE / dx_{measured}}{dE / dx_{theory}}\right)$$

D TOF

- Full azimuthal coverage (0, 2π)
- Kaon can be identified upto p=1.6 GeV/c
- Time of Flight

$$\langle t \rangle = \frac{L}{\beta}$$
 $\frac{1}{\beta} = \sqrt{1 + \frac{m^2}{p^2}}$

Hans Bichsel, NIM Phys Research A 562 (2006) 154–197.

Event Plane defined as:

$$\Psi_n = \left(\tan^{-1} \left[\frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right] \right) / n$$

□ Event Plane angle calculated in two different windows 'west' (η > 0.075) and 'east' (η < -0.075)

Constitution Event Plane Resolution then given by:

$$R = \sqrt{\langle \cos[n(\Psi_n^{west} - \Psi_n^{east})] \rangle}$$

• event-by- event resolution correction $\langle v_n \rangle = \langle \frac{v_n^{obs.}}{R} \rangle$

A.M. Poskanzer & Voloshin, Phys.Rev. C58 (1998).

φ-meson signal extraction

- ϕ meson decay -> K⁺K⁻(B.R 48.9 %)
- Background reconstructed from mixed events
- ϕ signal is fitted with BW +1st order

- The magnitude of $v_2(\psi_2)$ is greater than $v_3(\psi_3)$ and $v_4(\psi_4)$ for all centralities.
- v_n increases with p_T and has a maximum value in 2-3 GeV/c

- $v_2(\psi_2)$ shows strong centrality dependence
- No centrality dependence for $v_3(\psi_3)$ and $v_4(\psi_4)$ within statistical uncertainties

v_3/v_2 ratio

• v_3/v_2 ratio is constant for $p_T > 1.5$ GeV/c

 V_4/V_2^2 vs p_T

- We have presented $v_3(p_T)$ and $v_4(p_T)$ of ϕ meson in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- v_n increases with p_T and has a maximum value in 2-3 GeV/c
- No centrality dependence for $v_3(\psi_3)$ and $v_4(\psi_4)$ within statistical uncertainties
- v_3/v_2 and $v_4(\psi_4)/v_2^2$ ratios are calculated in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- v_3/v_2 ratio is constant for $p_T > 1.5$ GeV/c

Thank you

Back up Slides

- Corrected by Recentre + Shift method
- Fitted with $p0*(1+p1*\cos[n\Psi_n] + p2*\sin[n\Psi_n])$
- η gap between east & west event plane is 0.1

