

Measuring the Groomed Shared Momentum Fraction z_g in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV Using a Semi-inclusive Approach

Daniel Nemes

For the STAR collaboration

Yale University

Yale

DANIEL NEMES, DNP 2020

Groomed Shared Momentum Fraction z_g

- z_g is a substructure observable which probes the physics of the first hard splitting of a hard-scattered parton
- Defined as the momentum fraction of the subleading subjet groomed using SoftDrop [1] (here with chosen parameters $z_{\rm cut} = 0.1, \beta = 0$)

$$z_{\rm g} = \frac{{\rm Min}(p_{\rm T,1}, p_{\rm T,2})}{p_{\rm T,1} + p_{\rm T,2}} > 0.1$$

- Higher $z_g \rightarrow$ more symmetric splitting
- Lower $z_g \rightarrow$ more asymmetric splitting

J. Thaler, Alice Workshop 2015 (figure)

Jets In a Heavy Ion Environment

- Background uncorrelated to hard scatterings present in heavy-ion collisions
- Pedestal-like background subtraction: $p_{T,jet}^{reco} = p_{T,jet}^{raw} \rho A_{jet}$
- With the pedestal-like subtraction still present are fluctuations in the background, which are purely combinatorial and are reconstructed as jet-like objects
- Leading track or hard-core requirement are usual methods to remove purely combinatorial jets from jet candidate sample, however at the cost of imposing surface and/or fragmentation bias

Previous STAR Measurement of z_g

- z_{g} for di-jet sample, $p_{T,jet}^{Trig} > 20 \text{ GeV}/c$ and , $p_{T,jet}^{Recoil} > 10 \text{ GeV}/c$ (full jets)
- Hard-core matched jets to eliminate combinatorial jets
- Found no significant modification in central Au+Au compared to embedded *pp*

STAR, Phys. Rev. Lett. 119 (2017) 062301

13 2

[GeV/c]

1 3 2 1

Semi-inclusive Approach and its Benefits

- Select triggered events with a high $p_{\rm T}$ particle, selecting events with a preferentially surface-biased high Q^2 process
- Reconstruct jets in recoil range of the trigger object, a sample of jets which are potentially biased towards having a longer path length in the medium

- Minimal discrimination of jets on a jet-by-jet basis, avoiding imposing a fragmentation or surface bias on the measured jets
- Uncorrelated jets which mostly arise due to background fluctuations are subtracted off using a mixed event technique

STAR Detector

DANIEL NEMES, DNP 2020

STAR

Mixed Events and Transverse Energy Density ho

- Same Event (SE): HT triggered event, containing a BEMC tower with $E_{\rm T} > 9~{\rm GeV}$
- Mixed Event (ME): Minimum-bias events, mixed in bins of vertex position z_{vtx} , event-plane angle ψ_{EP} , luminosity, and centrality
- Absolute definition of ρ is not important, goal is to maximize relative agreement between SE and ME
- Variation in relative definition of ρ is taken as systematics

Extracting Uncorrelated Jet Yields

- Jets reconstructed (anti- $k_{\rm T}$ R=0.4) in SE and ME in the recoil range of the trigger object of the SE $|\varphi_{\rm iet} - \varphi_{\rm trig}| > \pi - \pi/4$
- Jets' $p_{\rm T}$ are shifted using area-based subtraction:

 $p_{\mathrm{T,jet}}^{\mathrm{reco,ch}} = p_{\mathrm{T,jet}}^{\mathrm{raw,ch}} - \rho A_{\mathrm{jet}}$

- Total per-trigger yield of jets within the recoil range is approximately the same for both ME and SE
- Most negative $p_{T,jet}$ region expected to have same per-trigger yields, ME scaled down by factor f_{ME} to compensate
- Can extract the yields of uncorrelated jets within a given jet $p_{\rm T}$ bin

- Shape of ME z_g distribution is significantly different than the usual 1/z shape
- Zeroth bin populated by jets which do not pass SoftDrop criterion, which notably is rare for combinatorial jets
- Combinatorial jet subtracted z_g is obtained by scaling ME distribution and subtracting from the SE distribution

Detector Level Comparison

- Combined **0-20%** centrality detector level jets with $20 < p_{T,jet}^{reco,ch} < 25 \text{ GeV}/c$
- Jet p_T range shown is insensitive to details of the combinatorial jet subtraction (less than 5% contribution)
- Comparison to smeared PYTHIA-6 embedded into MB 0-20% Au+Au events
- No significant modification found in this $p_{\rm T,jet}$ range compared to PYTHIA-6

Summary and Outlook

• Measured z_g for 0-20% central events within 20 < $p_{T,jet}^{reco,ch}$ < 25 GeV/*c* where the combinatorial jet contribution is less than 5%

 No significant modification for this semi-inclusively selected sample of jets compared to detector level PYTHIA-6 embedded into MB Au+Au collisions

• Plan to utilize this semi-inclusive approach to measure $z_{\rm g}$ down to lower jet $p_{\rm T}$ without inducing a fragmentation or surface bias on the measured jets