¹ Imaging the collective structure of atomic nuclei in high-² energy nuclear collisions from STAR

³ Chunjian Zhang (for STAR Collaboration)

⁴ Recently, high-energy nuclear collisions have been proposed as a powerful tool ⁵ to image the global structure of heavy atomic nuclei, such as their shapes and ⁶ radial profiles. We present the first quantitative demonstration of this method ⁷ by extracting the quadruple deformation β_2 and triaxiality γ for ²³⁸U nuclei, ⁸ known for its large prolate shape. We achieve this by comparing several flow ⁹ observables in collisions of ²³⁸U with collisions of near-spherical ¹⁹⁷Au. Though ¹⁰ the extracted β_2 of ²³⁸U is consistent with low-energy experiments, the measure-¹¹ ments indicate a non-zero γ of ²³⁸U in its ground state. A similar comparative ¹² measurement is carried out in collisions of ⁹⁶Ru and ⁹⁶Zr. Large differences are ¹³ observed in almost all flow observables in the two collision systems, reflecting ¹⁴ strong impacts from the structure differences between the pair of isobars. In ¹⁵ particular, our measurements suggest an intriguing octupole deformation β_3 in ¹⁶ ⁹⁶Zr which is not predicted by mean field model calculations, as well as a larger ¹⁷ neutron skin in ⁹⁶Zr. The prospect of the imaging method for studying nuclear ¹⁸ structure is also discussed.