

Measurements of Electrons from Semi-leptonic Heavy Flavor Decays in p+p and Au+Au Collisions at √s_{NN} = 200 GeV at STAR

Yaping Wang (for the STAR Collaboration)

Central China Normal University

Outline

- Motivation
- STAR Experiment at RHIC
- Non-Photonic Electron (NPE) Measurements
 - NPE production in p+p, Au+Au and U+U collisions
 - Separate D/B-decayed electrons in p+p and Au+Au collisions
- Summary and Outlook

Motivation

Heavy quarks (charm and bottom)

- Large masses, dominantly produced in hard scatterings at the early stage at RHIC energies
- > Test the validity of pQCD in p+p collisions and provide the reference for measurements in heavy-ion collisions
- > Probe to the QCD medium properties
 - ->energy loss (R_{AA})
 - ->thermalization (elliptic flow v_2)

Non-Photonic Electrons (NPE)

- Produced from semi-leptonic decays of open heavy flavor hadrons
- A good proxy to measure heavy flavor quark production

STAR Experiment at RHIC – STAR Detector

NPE Measurements – Data Analysis Methodology

Inclusive electrons

After electron ID

Non-photonic electrons

From D/B hadron decays

Photonic electrons

Partially reconstructed through e⁺e⁻ pairs

$$\begin{cases} \gamma \text{ conversion} & \gamma \to e^+ e^- \\ \pi^0 \text{ Dalitz decay} & \pi^0 \to \gamma e^+ e^- \\ \eta \text{ Dalitz decay} & \eta \to \gamma e^+ e^- \end{cases}$$

Hadron contamination

Statistically subtracted

NPE yield after background correction:

$$N_{npe} = N_{inclusive} * purity - N_{photonic} / \varepsilon_{photonic}$$

 $N_{npe} = N_{inclusive} * purity - N_{photonic} / \varepsilon_{photonic}$ $\left\{ \begin{array}{l} \text{purity: purity of inclusive electron sample} \\ \varepsilon_{\text{photonic}} \end{array} \right\}$: photonic electron reco. efficiency

NPE invariant cross-section:

$$E\frac{d^3\sigma}{dp^3} = \frac{1}{L} \frac{1}{2\pi p_T dp_T dy} \frac{N_{npe}}{\varepsilon_{Total}}$$

$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{1}{L} \frac{1}{2\pi p_{T}dp_{T}dy} \frac{N_{npe}}{\varepsilon_{Total}} \qquad \varepsilon_{Total} = \begin{cases} \varepsilon_{dE/dx} \varepsilon_{BEMC} \varepsilon_{Trigger} \varepsilon_{Tracking} & p_{T} > 1.5 \text{ GeV/c} \\ \varepsilon_{dE/dx} \varepsilon_{TOF} \varepsilon_{Tracking} & p_{T} < 1.5 \text{ GeV/c} \end{cases}$$

NPE Measurements – Data Analysis Methodology

Run12 200 GeV p+p collisions

Fit dE/dx Distribution to Extract Purity

Purity and Photonic Electron Eff.

Photonic Electron Reconstruction

Electron Reconstruction Eff.

NPE Measurements – NPE in 200 GeV p+p collisions

- > Spectrum was extended to both lower and higher p_T regions.
- \triangleright Consistent with pQCD calculation and previous STAR result. There is tension at low p_T between data and pQCD calculation.
- \triangleright Significantly better precision, leading to a reduction in the uncertainty of R_{AA} measurements in heavy-ion collisions.

NPE Measurements – NPE in 200 GeV Au+Au collisions

Run10 200 GeV Au+Au collisions

- In central collisions, significant differences were observed between Au+Au measurements and the scaled FONLL calculation, indicating existence of hot medium effects.
- From central to peripheral collisions, the difference decreases. This is consistent with the expectation that peripheral collisions should have smaller QGP effects.

The analysis with Run14 200 GeV Au+Au collisions is ongoing.

NPE Measurements – NPE R_{AA} in 200 GeV Au+Au collisions

- In the low p_T region, an enhancement is observed that is consistent with electrons from tagged D^0 decays. The large systematic uncertainties are dominated by that from the p+p reference.
- For p_T > 4 GeV/c, significant suppression is seen in the most central Au+Au collisions. The suppression decreases gradually toward more peripheral collisions.

 HP2016, Wuhan, Yaping Wang

NPE Measurements – NPE R_{AA} in 200 GeV Au+Au collisions

U+U and Au+Au systems use the same improved Run12 p+p reference

- NPE R_{AA} in the 0-5% most central 200 GeV Au+Au and 193 GeV U+U collisions are consistent within uncertainties.
- NPE suppression at high p_T in Au+Au collisions is similar to D⁰ mesons and light hadrons in Au+Au collisions as well as NPE and D⁰ mesons in U+U collisions.

NPE Measurements – Separate D/B-decayed Electrons

Run12 200 GeV p+p collisions

- > Prominent correlation signals on both near-side and away-side
- > PYTHIA 8.1 combined with STAR-HF-Tune Version 1.1 to generate e(D)-h and e(B)-h correlations for 200 GeV p+p collisions
- Significant difference on the near-side of correlation distributions between D and B decays due to different decay kinematics

NPE Measurements – Separate D/B-decayed Electrons

- Fit function: (R*PYTHIA_B+(1-R)*PYTHIA_D)*Norm
- R is B contribution, i.e. B/(B+D), as a free parameter in fit function.

- B→e contributions in 200 GeV p+p collisions are obtained from NPE-h correlations, and consistent with FONLL calculation.
- Agree with previous STAR analysis for p_T < 8.5 GeV/c with significantly reduced systematics.

NPE Measurements – Separate D/B-decayed Electrons

B->e R_AA

$$N_{b\rightarrow e} = N_{NPE} - N_{c\rightarrow e}$$

 $N_{c\rightarrow e}$: extract the charm quark cross-section from the measured $D^0 p_T$ spectrum by STAR, and decay the charm quarks into electrons through PYTHIA.

Two different functions, i.e. Levy and Power-law, are used to fit D^0 p_T spectrum, and the difference from these two fits is taken as the uncertainty.

- 1) In peripheral collisions, B->e R_{AA} is consistent with no suppression.
- 2) In mini. bias and 0-10% central collisions, B->e R_{AA} shows an indication of suppression (~ $D^0 R_{AA}$ within large uncertainties).

STAR Heavy Flavor Tracker

- First application of Monolithic Active Pixel Sensor (MAPS) technology in collider experiments. DCA resolution < 50 μ m for Kaons at p_T = 750 MeV/c.
- Recorded about 3B Minimum-Bias 200 GeV Au+Au events for D^0 , D^{\pm} , D_s , Λ_c , and 1 nb^{-1} high p_{\top} electron and dimuon samples for $D/B \rightarrow e$ and $B \rightarrow J/\psi$ studies in 2014 and 2016.
- HFT will allow the separation of B and D decayed electrons for the first time at the STAR experiment using the impact parameter method.

Summary and Outlook

NPE cross-section in p+p collisions at √s = 200 GeV

- (1) Measured over a broad p_T range 0.3-12 GeV/c with significantly improved precision than previous measurements.
- (2) Consistent with pQCD calculation except that there is tension at low p_T .

• NPE R_{AA} in Au+Au collisions at $\int s_{NN} = 200 \, GeV$

- (1) Strong suppression at high p_T in central collisions, which is consistent with substantial energy loss of heavy quarks in dense matter.
- (2) Likely enhancement at low p_T , which is consistent with D⁰ R_{AA}, suggesting that charm quarks may recombine with light quarks in the medium.
- (3) Consistent results between 0-5% central Au+Au and U+U collisions within uncertainties.

Separate D/B-decayed electrons

- (1) Bottom contribution to NPE is extracted using NPE-h correlations in p+p collisions at \sqrt{s} = 200 GeV with extended p_{T} range and reduced systematics than previous measurements.
- (2) Looking forward to a separation of charm and bottom contributions to NPE in Au +Au collisions with HFT.

Thanks for your attention!