

Measurements of Open Heavy Flavor Production through Semi-leptonic Decay Channels at the STAR experiment

Shenghui Zhang

University of Science and Technology of China (USTC)
University of Illinois at Chicago (UIC)

Outline

- > Motivation
- >STAR experiment
- ➤ Non-Photonic Electron (NPE) measurements:
 - -> Reference from p+p collisions at \sqrt{s} = 200 GeV
 - -> Nuclear modification factor (R_{AA}) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
- > Heavy Flavor Tracker prospects
- > Summary

Motivation

The time evolution of a high-energy heavy-ion collision.

Motivation

Heavy quarks (charm and bottom)

- Large masses, dominantly produced in hard scatterings at the early stage
- > Probe to the QCD medium properties
 - ->energy loss (R_{AA})
 - ->thermalization (elliptic flow v_2)
- pp collisions: test the validity of pQCD and provide the reference for heavy-ion collisions

Non-Photonic Electrons (NPE)

- Produced from semi-leptonic decays of open heavy flavor hadrons
- > A good proxy to heavy flavor quark production

STAR Detector

Time Projection Chamber (TPC)

- •|eta|<1.0,full azimuth
- •Tracking, momentum.
- •PID through dE/dx

Time of Flight (TOF)

- · leta |< 1.0, full azimuth
- •PID through time-of-flight
- Timing resolution:~85 ps.

Barrel Electromagnetic Calorimeter (BEMC)

- | eta | < 1.0, full azimuth
- •PID through p/E
- Fast online trigger

■Electron identification

6

Methodology

Inclusive electrons

After electron ID

Non-photonic electrons

From D/B hadron decays

through ete pairs

 $\lfloor \eta \; Dalitz \; decay \;\; \eta
ightarrow \gamma e^+e^-$

Hadron contamination

Statistically subtracted

NPE yield after background subtraction

$$N_{npe} = N_{inclusive} * purity - N_{photonic} / arepsilon_{photonic}$$
 purity: purity of inclusive electron sample $arepsilon_{photonic}$: photonic electron reco. efficiency

NPE invariant cross section:

$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{1}{L} \frac{1}{2\pi p_{T}dp_{T}dy} \frac{N_{npe}}{\varepsilon_{Total}} \quad \varepsilon_{total} = \begin{cases} \varepsilon_{dE/dx} \varepsilon_{BEMC} \varepsilon_{trigger} \varepsilon_{tracking} & p_{T} > 1.5 GeV/c \\ \varepsilon_{dE/dx} \varepsilon_{TOF} \varepsilon_{tracking} & p_{T} < 1.5 GeV/c \end{cases}$$

■ Extract NPE yield

Low p_T measurements from Run12 200 GeV p+p collisions

Photonic electron identification

NPE cross section from Run12 200 GeV p+p collisions

- > Spectrum was extended to the low $p_{\scriptscriptstyle T}$ region.
- > Consistent with pQCD calculation and previous STAR result.
- \triangleright Greatly reduced uncertainty, leading to a reduction in the uncertainty of R_{AA} measurements in heavy-ion collisions.

■ NPE yield in Au+Au **■**

NPE yield from Run10 200 GeV Au+Au collisions

- In central collisions, there are significant differences between Au+Au measurements and the scaled FONLL calculation, indicating existence of hot medium effects.
- From central to peripheral collisions, the difference is getting smaller, which is consistent with less QGP effects in peripheral collisions.
- The analysis with Run14 200 GeV Au+Au data is ongoing.

NPE R_{AA} in 200 GeV Au+Au collisions

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} * \frac{dN_{AA}/dy}{dN_{pp}/dy}$$

- ✓ Enhancement at low p_T , with large systematic uncertainties from pp reference.
- \checkmark Strong suppression is observed at high p_T in central collisions.

Compare NPE R_{AA} with D^0 and light hadron R_{AA} in different heavy-ion collision systems.

✓ Suppression of NPE at high p_T in central Au+Au collisions is similar to that of D⁰ mesons and light hadrons in Au+Au collisions as well as NPE and D⁰ mesons in central U+U collisions.

- ✓ HFT will allow a direct measurement of B->e spectrum in Au+Au collisions via reconstructing displaced decay vertices.
- ✓ Help better understand the interactions between heavy quarks and the medium.

\blacksquare Simulation of e_D and e_B

- Photon conversion background can be significantly suppressed by requiring hits in the first HFT PXL layer.
- Simulation with HFT for electrons decayed from D and B hadrons:
 - DCA distributions for D and B decayed electrons, and photonic electrons (PHE) are obtained from fast simulation using realistic detector resolutions from data
 - Pseudo data generated and fitted to D/B/PHE MC templates, with stat. uncertainty at p_T = 2-4 GeV/c:
 - ♦ δD/D~3%
 - ❖ δB/B~12%
- With full statistics of Run14+16 data, precise measurements are possible.

Summary

- ♦ NPE cross section in p+p collisions at \sqrt{s} = 200 GeV
 - 1) measured over a broad $p_{\rm T}$ range 0.3-12 GeV/c with significantly improved precision than previous measurements.
 - 2) consistent with pQCD calculation.
- $igoplus NPE R_{AA}$ in Au+Au collisions at \sqrt{s} = 200 GeV
 - 1) observed large suppression at high- $p_{\rm T}$ in central collisions, which is consistent with substantial energy loss of heavy quarks in the dense matter.
 - 2) likely an enhancement at low p_{T} , suggesting the scenario that charm quarks recombine with light quarks in the medium with strong radial flow.
- ◆ Look forward to separating charm and bottom contributions to NPE in Au+Au collisions with HFT data.

Back up

HFT Design

HFT consists of 3 sub-detector systems inside the STAR Inner Field Cage

Detector	Radius (cm)	Hit Resolution R/φ - Z (μm - μm)	Thickness
SSD	22	30 / 860	1% X ₀
IST	14	170 / 1800	1.32 %X ₀
PIXEL	8	6.2 / 6.2	~0.52 %X ₀
	2.8	6.2 / 6.2	~0.39% X ₀

- SSD existing single layer detector, double side strips (electronic upgrade)
- ➤ IST one layer of silicon strips along beam direction, guiding tracks from the SSD through PIXEL detector proven pad technology
- ➤ PIXEL double layers, 20.7x20.7 mm pixel pitch, 2 cm x 20 cm each ladder, 10 ladders, delivering ultimate pointing resolution. new active pixel technology

Background from hadron decays

Study background by simulations

1)
$$K \rightarrow e\pi v(K_{e3})$$
:

$$K^+ \to e^+ \pi^0 v$$
 $K_L^0 \to e^{\pm} \pi^{\mp} v$

2) dielectron decays of vector mesons:

$$\omega \rightarrow e^+e^-/\omega \rightarrow \pi^0e^+e^- \phi \rightarrow e^+e^-/\phi \rightarrow \eta e^+e^-$$

