

Measurements of Open Heavy Flavor Production in Semi-leptonic Channels at the STAR experiment

Shenghui Zhang

University of Science and Technology of China (USTC) University of Illinois at Chicago (UIC)

HOT QUARKS, SEPTEMBER 12 - 17, SOUTH PADRE ISLAND TX, USA

Outline

Motivation

STAR experiment

Non-Photonic Electron (NPE) measurements:

-> Reference from p+p collisions at \sqrt{s} = 200 GeV

-> Nuclear modification factor (R_{AA}) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

>Heavy Flavor Tracker prospects

> Summary

The time evolution of a high energy heavy-ion collision.

Shenghui Zhang

2016 Hot Quarks, South Padre island, TX

Motivation

Heavy quarks (charm and bottom)

- Large masses, dominantly produced in hard scatterings at the early stage
- Probe to the QCD medium properties

 ->energy loss (R_{AA})
 ->thermalization (elliptic flow v₂)
- Test the validity of pQCD and provide the reference for heavy-ion collisions

Non-Photonic Electrons (NPE)

- Produced from semi-leptonic decays of open heavy flavor hadrons
- A good proxy to measure heavy flavor quark production

Shenghui Zhang 2016 Hot Quarks, South Padre island, TX

STAR Detector

Time Projection Chamber (TPC) •Tracking, momentum. •PID through dE/dx

Time of Flight (TOF)

- PID through time-of-flight
- Timing resolution:~85 ps.

Barrel Electromagnetic Calorimeter (BEMC)

- PID through p/E
- Fast online trigger

Electron identification

Shenghui Zhang

NPE yield after background subtraction

$$\begin{split} N_{npe} &= N_{inclusive} * purity - N_{photonic} / \varepsilon_{photonic} \begin{bmatrix} \text{purity: purity of inclusive electron sample} \\ \varepsilon_{photonic} &: \text{photonic electron reco. efficiency} \\ \text{NPE invariant cross section:} \\ E \frac{d^{3}\sigma}{dp^{3}} &= \frac{1}{L} \frac{1}{2\pi p_{T} dp_{T} dy} \frac{N_{npe}}{\varepsilon_{Total}} \quad \varepsilon_{total} = \begin{bmatrix} \varepsilon_{dE/dx} \varepsilon_{BEMC} \varepsilon_{trigger} \varepsilon_{tracking} & p_{T} > 1.5 GeV/c \\ \varepsilon_{dE/dx} \varepsilon_{TOF} \varepsilon_{tracking} & p_{T} < 1.5 GeV/c \end{bmatrix} \end{split}$$

Extract NPE yield

Low p_T measurements from Run12 200 GeV p+p collisions

Inclusive electron

2016 Hot Quarks, South Padre island, TX

NPE cross section from Run12 200 GeV p+p collisions

- Spectrum was extended to the low p_T region.
- Consistent with pQCD calculation and previous STAR result.
- >Greatly reduced uncertainty, leading to a reduction in the uncertainty of R_{AA} measurements in heavy-ion collisions.

NPE yield in Au+Au

NPE yield from Run10 200 GeV Au+Au collisions

- In central collisions, there are significant differences between Au+Au measurements and the scaled FONLL calculation, indicating existence of hot medium effects.
- From central to peripheral collisions, the difference is getting smaller, which is consistent with less QGP effects in peripheral collisions.
 - The analysis with Run14 200 GeV Au+Au collisions is ongoing.

NPE R_{AA} in 200 GeV Au+Au collisions

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} * \frac{dN_{AA}/dy}{dN_{pp}/dy}$$

NPE R_{AA}

- Enhancement at low p_T , with large systematic uncertainties from pp reference, is consistent with D⁰ decayed electron R_{AA} .
- ✓ Strong suppression is observed at high p_T in central collisions.

Compare NPE R_{AA} with D⁰ and light hadrons R_{AA} in different heavy-ion collision systems.

 ✓ Suppression at high p_T in central Au+Au collisions is similar to D⁰ mesons and light hadrons in Au+Au collisions as well as NPE and D⁰ mesons in central U+U collisions.

NPE $R_{\Delta\Delta}$

*b->e R*_{AA}

$N_{b\rightarrow e} = N_{NPE} - N_{c\rightarrow e}$

 $N_{c\rightarrow e}$: extract the charm quark cross-section from the measured D^0 p_T spectrum by STAR, and decay the charm quarks into electrons through PYTHIA.

Two different functions, i.e. Levy and Power-law, are used to fit $D^0 p_T$ spectrum, and the difference from these two fits is taken as the uncertainty.

1) In peripheral collisions, b->e R_{AA} consistent with no suppression.

- 2) In min-bias and 0-10% central collisions, b->e R_{AA} consistent with indication of suppression (~ $D^0 R_{AA}$ within large uncertainties).
- 3) We expect more precise impact parameter method measurement with Heavy Flavor Tracker (HFT).

HFT

- ✓ HFT will allow a direct measurement of B->e spectrum in Au+Au collisions via displaced decay vertices.
- ✓ Help understand the interactions between partons and the medium.

14

- Summary

• NPE cross section in p+p collisions at $\int s = 200 \text{ GeV}$

- 1) measured over a broad p_T range 0.3-12 GeV/c with significantly improved precision than previous measurements.
- 2) is consistent with pQCD calculation.

• NPE R_{AA} in Au+Au collisions at \sqrt{s} = 200 GeV

- observed large suppression at high-p_T in central collisions, which is consistent with substantial energy loss of heavy quarks in dense matter.
- 2) observed an enhancement at low p_T , which is consistent with D^o decay electron R_{AA} , suggesting the scenario that charm quarks recombine with light quarks in the medium with strong radial flow.

Look forward to separation of charm and bottom contributions to NPE in Au+Au collisions with HFT data.

Shenghui Zhang

15

Back up

HFT Design

 $H \vdash I$

HFT consists of 3 sub-detector systems inside the STAR Inner Field Cage

Detector	Radius (cm)	Hit Resolution R/φ - Z (μm - μm)	Thickness
SSD	22	30 / 860	1% X ₀
IST	14	170 / 1800	1.32 %X ₀
PIXEL	8	6.2 / 6.2	~0.52 %X ₀
	2.8	6.2 / 6.2	~0.39% X ₀

- SSD existing single layer detector, double side strips (electronic upgrade)
- IST one layer of silicon strips along beam direction, guiding tracks from the SSD through PIXEL detector - proven pad technology
- PIXEL double layers, 20.7x20.7 mm pixel pitch, 2 cm x 20 cm each ladder, 10 ladders, delivering ultimate pointing resolution. new active pixel technology

Background from hadron decays

Study background by simulations

