



# $\phi$ production in Au+Au collisions at $\sqrt{s_{NN}}=19.6$ , 14.6, and 7.7 GeV with the STAR experiment

Weiguang Yuan (for the STAR Collaboration) Tsinghua University

- Motivation
- Experimental analysis
- ➢ Results
  - ✓  $p_{\rm T}$  spectra
  - ✓ Rapidity spectra
  - ✓ Nuclear modification factors
  - $\checkmark \phi/K^-, \Omega/\phi$  ratio
- > Summary

Supported in part by the



#### Motivation

- Beam Energy Scan (BES) program:
  - Search for the critical point
  - Search for the first-order phase transition
  - Search for the threshold of QGP formation
- Energy dependency of QGP signature
  - Strange baryon-to-meson ratio can be utilized to understand hadronization mechanism
  - R<sub>CP</sub> may give insight into the parton energy loss

 $R_{ ext{CP}} = rac{[(dN/dp_T)/\langle N_{ ext{coll}}\,
angle]_{ ext{central}}}{[(dN/dp_T)/\langle N_{ ext{coll}}\,
angle]_{ ext{peripheral}}}$ 



### **Motivation: Why study** $\phi$ ?

- ➤ Long lifetime and small reaction cross-section
- Lifetime: 41  $fm/c \rightarrow$  the decay products are not disturbed by the late hadronic rescatterings
- Small cross-section  $\rightarrow \phi$  is more likely to remain unaffected by the later stage of hadronic interactions

- Enhanced yield in QGP
- Restored chiral symmetry in QGP  $\rightarrow$  the mass of *s* and  $\bar{s}$  is smaller and  $s\bar{s}$  pairs can be produced in large quantities by gluon fusion and light  $q\bar{q}$  pairs annihilation



### Motivation: Why $\Omega/\phi$ ratio?

STAR: Phys. Rev. C 93 (2016) 2, 021903



•  $\Omega/\phi$  ratio for BES-I energies



- $\Omega/\phi$  ratio for 200 GeV energies
- At  $\sqrt{s_{NN}} = 200$  GeV, the enhanced  $\Omega/\phi$  ratios from p+p collision to central Au+Au collision may indicate the existence of QGP
- ▶ For BES-I energy, the uncertainties are too large to draw a firm conclusion below 11.5GeV.

#### **Motivation: More precise measurement**



→ BES-II compared to BES-I: ~10-18 times larger statistics → higher precision and wider  $\mu_B$  coverage



Large and uniform acceptanceExcellent particle identification

#### Particle identification and reconstruction

Au+Au  $\sqrt{s_{\rm NN}} = 19.6 \, {\rm GeV}$ 



#### Particle identification with upgraded TPC and bTOF



• Combinational background have been removed by Mix-Event Method.

### $p_{\rm T}$ spectra of $\phi$ at $\sqrt{s_{NN}}$ = 19.6, 14.6 and 7.7 GeV



 $\succ$  For  $\phi$ : Levy function fit to extrapolate down to zero  $p_{\rm T}$ 

#### $p_{\rm T}$ spectra of $\Omega$ at $\sqrt{s_{NN}} = 19.6$ , 14.6 and 7.7 GeV





For Ω: Boltzmann function fit to extrapolate down to zero  $p_{\rm T}$ 

### Rapidity spectra of $\phi$



Rapidity spectra of φ are Gaussian-like distributions
 Rapidity distribution become wider with increasing energy

#### Nuclear modification factor



$$R_{ ext{CP}} = rac{[(dN/dp_T)/\langle N_{ ext{coll}}\,
angle]_{ ext{central}}}{[(dN/dp_T)/\langle N_{ ext{coll}}\,
angle]_{ ext{peripheral}}}$$

- $R_{CP} < 1$  for higher  $p_T$  at  $\sqrt{s_{NN}} = 200 \text{ GeV} \rightarrow$ Partonic energy loss in the QGP medium
- $R_{CP} > 1$  for higher  $p_T$  at  $\sqrt{s_{NN}} = 19.6$  GeV and lower energies  $\rightarrow$  Cronin-type interactions, radial flow and/or coalescence hadronization
- R<sub>CP</sub> of  $\phi$  at  $\sqrt{s_{NN}} = 7.7$  GeV is significantly different from that at  $\sqrt{s_{NN}} = 14.6$  and 19.6 GeV

#### Centrality dependence of $\phi$ yields (dN/dy)

STAR: arXiv2407.10110



- Fit function:  $(dN/dy)/(N_{part}/2) = k \times N_{part}^{\alpha-1}$
- >  $\alpha$  parameter for  $\phi$  is slightly larger than that for  $\Lambda$ , K and less than UrQMD predictions

#### Centrality and Energy dependence of $\phi/K^-$ ratio



- The  $\phi/K^-$  ratio exhibits no clear dependency on centrality or energy across the range of  $\sqrt{s_{NN}} = 7.7$  to 19.6 GeV
- The  $\phi/K^-$  ratio reaches the GCE limit at  $\sqrt{s_{NN}} = 7.7$ , 14.6 and 19.6 GeV

### $\Omega(sss)/\phi(s\overline{s})$ ratio



Similar to the observation at  $\sqrt{s_{NN}} = 200$  GeV, the  $\Omega/\phi$  ratio increases from peripheral to central collisions at intermediated  $p_{\rm T}$ , which is compatible with the existence of QGP at  $\sqrt{s_{NN}} \ge 7.7$  GeV

### Summary

#### Summary:

- The  $p_{\rm T}$ , centrality and rapidity dependences of  $\phi$  production at  $\sqrt{s_{NN}} = 7.7$ , 14.6 and 19.6 GeV have been presented
- Hadronic transport model UrQMD cannot describe centrality dependence well from  $\sqrt{s_{NN}} = 7.7$  to 19.6 GeV
- For  $\phi/K^-$  ratio, both GCE and CE calculations are consistent with the data across the range of  $\sqrt{s_{NN}} = 7.7$  to 19.6 GeV
- The  $\phi R_{CP}$  at low energies shows the radial flow and quark coalescence effects
- The  $\Omega(sss)/\phi(s\overline{s})$  ratio is compatible with the existence of QGP signals at  $\sqrt{s_{NN}} \ge 7.7 \text{ GeV}$

#### **Outlook:**

- The measurements in other BES-II datasets at different energies will be conducted
- Other BES-II energies:  $\sqrt{s_{NN}} = 9.2$ , 11.5 and 17.3 GeV

Thanks!!

#### **Back up:** Rapidity spectra of $\phi$ in UrQMD at 19.6 GeV



#### Back up:

#### **Coalescence model**

- > According to recombination model, if exist QGP, mesons and baryons can be formed by combining quarks.
- The yield distribution of a produced meson with momentum p:
- The yield distribution of a produced baryon with momentum p:

$$F_{s\bar{s}} = \mathcal{T}_s \mathcal{T}_s + \mathcal{T}_s \mathcal{S}_s + \{\mathcal{S}_s \mathcal{S}_s\},$$

$$F_{sss} = \mathcal{T}_s \mathcal{T}_s \mathcal{T}_s + \mathcal{T}_s \mathcal{T}_s \mathcal{S}_s + \mathcal{T}_s \{\mathcal{S}_s \mathcal{S}_s\} + \{\mathcal{S}_s \mathcal{S}_s \mathcal{S}_s\} .$$

$$\mathcal{T}(p_1) = p_1 \frac{dN_q^{\text{th}}}{dp_1} = C p_1 \exp(-p_1/T) ,$$

$$T_s \text{ is the } \mathcal{T}(p_1) = p_1 \frac{dN_q^{\text{th}}}{dp_1} = C p_1 \exp(-p_1/T) ,$$

$$\mathcal{S}(p_2) = \xi \sum_i \int_{k_0}^\infty dk \, k \, f_i(k) \, S_i(p_2/k)$$

$$\begin{split} p^{0} \frac{dN_{B}}{dp} &= \int \frac{dp_{1}}{p_{1}} \frac{dp_{2}}{p_{2}} \frac{dp_{3}}{p_{3}} F_{qq'q''}(p_{1}, p_{2}, p_{3}) R_{B}(p_{1}, p_{2}, p_{3}, p). \\ p^{0} \frac{dN_{M}}{dp} &= \int \frac{dp_{1}}{p_{1}} \frac{dp_{2}}{p_{2}} F_{q\bar{q}'}(p_{1}, p_{2}) R_{M}(p_{1}, p_{2}, p), \\ P_{0} \not \supset \mathsf{E} & & & \\ \frac{dN_{\phi}}{pdp} &= \frac{g_{\phi}}{pp_{0}} F_{s\bar{s}}(p/2, p/2), \\ \frac{dN_{\Omega}}{pdp} &= \frac{g_{\Omega}}{pp_{0}} F_{sss}(p/3, p/3, p/3), \end{split}$$

The yield distribution of  $\Omega$  and  $\phi$ .

 $T_s$  is the thermal parton distribution comes from QGP.  $S_s$  is the shower parton distribution comes from hard scattering.

#### Back up:

#### **Coalescence model**

> Just consider the contribution of thermal partons:

$$\begin{split} \frac{dN_{\phi}}{pdp} &= g_{\phi}C_s^2\frac{p}{4p_0}e^{-p/T_s} \ ,\\ \frac{dN_{\Omega}}{pdp} &= g_{\Omega}C_s^3\frac{p^2}{27p_0}e^{-p/T_s} \ , \end{split}$$



$$R^{\mathrm{th}}_{\Omega/\phi}(p) = rac{4g_\Omega C_s}{27g_\phi}p,$$

Ratio of  $\Omega/\phi$  is proportional to *p*.

> The  $\Omega/\phi$  ratio distribution with  $p_T$ 



![](_page_17_Figure_9.jpeg)

![](_page_17_Figure_10.jpeg)

#### Back up:

![](_page_18_Figure_1.jpeg)

**UrQMD** 

## No obvious Centrality dependence for 7.7 GeV.