Supported in part by

Global polarization of hyperons at BES-II energies by the STAR experiment

Outline:

- Introduction
- Global hyperon polarization
- Motivation
- The STAR experiment
- Hyperon polarization measurements
- Results
- Conclusions

Egor Alpatov (for the STAR Collaboration) National Research Nuclear University MEPhI

Egor Alpatov NLCLELS-2025

Introduction

- The Quark-Gluon Plasma (QGP) formed in non-central nucleus-nucleus collisions may exhibit vorticity as a result of the large angular momentum carried by the initial collision system
- Spin-orbit coupling aligns spin directions of produced particles along the direction of <u>vorticity</u>

Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
 S. A. Voloshin, arXiv:nucl-th/0410089

 Another possible source of particle polarization is <u>magnetic field</u>, created in non-central collisions in the initial stage

D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008)
 McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

• In non-central Heavy-Ion Collisions the initial collective longitudinal flow velocity depends on the velocity gradient:

$$\omega_y = \frac{1}{2} (\nabla \times v)_y \approx -\frac{1}{2} \frac{dv_z}{dx}$$

• For small polarization: Becattini, Karpenko, Lisa, Upsal, Voloshin PRC95.054902 (2017) $P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$

$$P_{\overline{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$

Egor Alpatov NLCLELS-2025

How to measure global polarization?

- Hyperons are "self-analyzing" due to weak decay properties:
 - Daughter baryons are preferentially emitted along parent spin direction
- Daughter baryons of hyperons with polarization (\vec{P}) follows the distribution:

 $\frac{dN}{dQ^*} = \frac{1}{4\pi} \left(1 + \alpha_H |\vec{P}| \cdot \widehat{p_b^*} \right) = \frac{1}{4\pi} \left(1 + \alpha_H P \cos \theta^* \right)$

- α_H decay parameter, unique for each hyperon species
- $\widehat{p_h^*}$ is the daughter baryon momentum in the parent frame
- Projection to the transverse plane can be measured: $P_{H} = \frac{8}{\pi \alpha_{H}} \frac{\langle sin(\psi_{1} - \varphi_{p}^{*}) \rangle}{Res(\psi_{1})}$

 - ψ_1 is first-order event plane angle (proxy for reaction plane)
 - ψ_1 and its resolution $Res(\psi_1)$ can be calculated with spectator's signal.
- E global polarization could also be measured via its daughter Λ polarization with transfer factor $C_{\Xi\Lambda} = 0.944$ Egor Alpatov N.CLEL5-2025

Motivation

- Global polarization of Λ hyperons was measured for $\sqrt{s_{NN}}$ = 3-200 GeV at STAR
- P_H decreases with increasing collision energy
- Recent BES-II Λ global polarization studies shows no significant difference between Λ and $\overline{\Lambda}$ global polarization
- Theoretical calculations can quantitively explain the energy dependence of the Λ polarization, but many of them fail to explain differential measurements like azimuthal dependence of local polarization
- Nowadays there is a growing interest to measure the global polarization of other hyperons such as Ξ .
- Ξ and Ω hyperons global polarization was measured in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
- Ξ polarization may provide new input for global polarization and vorticity studies

5

PRC 108, 014910 (2023)

Egor Alpatov N.CLELS-2025

The STAR experiment

Detectors with their η acceptance:

Hyperon reconstruction:

- Time Projection Chamber $|\eta| \in [-1, 1]$
- **iTPC** increases TPC acceptance to [-1.5, 1.5]
- Time-Of-Flight $|\eta| \in [-0.9, 0.9]$

Event plane angle measurement:

- Beam-Beam Counter
 |η| ∈ [3.3, 5.0]
- Event-Plane Detector $|\eta| \in [2.1, 5.1]$
- Larger EPD acceptance and granularity improves event-plane resolution ~1.5 times compared to BBC in BES-I

6

Experimental technique

• Event plane Ψ_1 is determined by detectors at forward rapidity where directed flow is large

•
$$Res(\Psi_{1, Full \eta}) = \sqrt{2 < \cos(\Psi_{1, Forward \eta} - \Psi_{1, Backward \eta})} >$$

• EPD was used to determine event-plane angle

Egor Alpatov NLCLEL5-2025

Hyperon reconstruction performed via decay topology with KFParticle tecnique

- Λ daughters identified via TPC and TOF
- Ξ were reconstructed via $\Xi \rightarrow \Lambda + \pi$

Zyzak, Maksym, Kisel, Ivan, Kulakov, Igor, & Vassiliev, Iourii (2013). The KFParticle package for the fast particle reconstruction

in ALICE and CBM

 $\Psi_{1} = \tan^{-1}\left(\frac{\sum w_{i} \sin(\phi_{i})}{\sum w_{i} \cos(\phi_{i})}\right) \text{, where } w_{i} \text{ is detector's tile ADC} \quad \text{A. M. Poskanzer, S. A. Voloshin, PRC58.1671(1998)}$

BES-II results: Λ global polarization

- New STAR Preliminary results at $\sqrt{s_{NN}}$ =7.7-17.3 GeV
- Significant improvement in precision, consistent dependence with BES-I
- No obvious splitting between Λ and $\overline{\Lambda}$ global polarization with high precision
- Upper limit on late stage magnetic field ignoring feeddown effect:

•
$$|B| \approx \frac{T_S |P_{\overline{\Lambda}} - P_{\Lambda}|}{2 |w_{\overline{\Lambda}}|}$$

• $B \lesssim 10^{13} \text{T} (95\% \text{ confidence level})$

BES-II results: Ξ global polarization

- Significant non-zero signal of Ξ global polarization observed
- Decreasing with increase in collision energy
- Consistent between direct (via φ_{Λ}^*) and indirect ($P_{\Lambda} = C_{\Xi\Lambda}P_{\Xi}$) measurements
- No significant difference between Λ and Ξ global polarization
 - While $P_{\Xi} \sim P_{\Lambda}$ is expected from pure spin transfer from vorticity, there is possible difference due to different freeze-out properties

Z.-T. Liang and X.-N. Wang, PRL 94, 102301 (2005) 9 Hui Li et al., PLB 827, 136971(2022)

BES-II results: Ω global polarization

- Ω global polarization seems to decrease with increase in collision energy
- A hint of larger Ω global polarization than Λ at lower energies
 - Theory expects larger global polarization of Ω

•
$$P_{\Omega} \sim \frac{5}{3} P_{\Lambda}$$

10

Conclusions

- No splitting observed between Λ and $\overline{\Lambda}$ global polarization in Au+Au collisions at 7.7 27 GeV Au+Au collisions
- First measurements of $\Xi^- + \overline{\Xi}^+$ and $\Omega^- + \overline{\Omega}^+$ global polarization at 7.7-27 GeV Au+Au collisions
- Global polarization decrease with increase in collision energy
- Hint of larger $\Omega^- + \overline{\Omega}^+$ global polarization

Thank you for your attention!