UPC MEASUREMENTS AT STAR

Nicole Lewis

RHIC & AGS Users' Meeting 2022

Supported in part by:

Office of Science

Ultraperipheral Collisions

- Heavy ion collisions when the impact parameter is so large, no hadronic collision can occur (b > 2R)
- Ultrarelativistic nuclei produce highly Lorentz contracted electromagnetic fields
 - Equivalent Photon Approximation (EPA): (in a specific phase space) transverse EM fields can be quantized as a flux of quasi-real photons
 - C. F. V. Weizsäcker, Z. Phys. 88, 612 (1934)
 - E. J. Williams, Phys. Rev. **45**, 729 (1934).
 - High photon density with highly charged nuclei ($\propto Z^2$)

Observation of Breit-Wheeler Process and Vacuum Birefringence in Ultraperipheral Collisions

STAR Collaboration, Phys. Rev. Lett. 127, 052302 (2021)

"Collisions of Light Produce Matter/Antimatter from Pure Energy". Brookhaven National Laboratory. July 28, 2021

- Breit-Wheeler Process: $\gamma \gamma \rightarrow e^+ e^-$
- Demonstrates colliding photons are linearly polarized

Novel Quantum Entanglement Discovered with Diffractive ρ

- \bullet Quantum interference between one ion emitting the ρ versus the other
 - Analogous to a double-slit pattern
 - Expected $\cos(2\phi)$ modulation
 - H. Xing, *et al.* J. High Energ. Phys. **2020,** 64 (2020)

 $\otimes z$

 $(\pi^+ - \pi^-)/2$

Novel Quantum Entanglement Discovered with Diffractive ρ

Precision extraction of the nuclear mass (strong-interaction) radius

Diffractive ρ Signal Persists Even in Peripheral Events

- Does the presence of strongly interacting matter force the wave function collapse?
- Modulation still present in peripheral collisions
 - Polarization and quantum entanglement survive the abundant hadronic interactions
 - Detailed quantitative analysis underway to put limits on wave function collapse
- No clear dependence on centrality, despite strong centrality dependence predicted by theoretical calculations
 H. Xing, et al, JHEP 10, 064 (2020)

Photoproduction of Lepton Pairs in Hadronic Collisions

- Low p_T excess of e^+e^- in peripheral collisions
 - Cocktail used to estimate the contribution from hadronic interactions
 - No significant centrality dependence
 - Can't be explained through inmedium broadened ρ spectral function
- Qualitatively described by photonphoton interaction process in violent hadronic A + A collisions
 - Observation of $\gamma \gamma \rightarrow e^+ e^-$ in hadronic heavy ion collisions

Excess of e^+e^- Changes with Beam Energy and Centrality

- Excesses above hadronic production are observed at $low-p_T$
 - Studying dependence on energy (54.4 vs 200 GeV) and centrality
- Observed excess consistent with lowest-order EPA-QED predictions

W. Zha *et al*, Phys. Lett. B **800**, 135089 (2020)

Excess of e^+e^- Changes with Beam Energy and Centrality

- $\sqrt{\langle p_T^2 \rangle}$ is sensitive to p_T broadening
- $\sqrt{\langle p_T^2 \rangle}$ decreases for more peripheral collisions
 - Impact parameter dependence
- Energy dependence
 - Some discrepancy between 200 GeV points and EPA-QED prediction

W. Zha *et al*, Phys. Lett. B **800,**135089 (2020)

Constraining the Nuclear Charge Radius

Excess of $\mu^+\mu^-$

• First cross section measurement of photo-produced $\mu^+\mu^-$ in heavy ion collisions at low p_T

- Excess concentrated at $p_T \lesssim 0.1~{\rm GeV}/c$

• Comparing to:

EPA-QED: W. M. Zha *et al*, Phys. Lett. B **800**, 135089 (2020)

STARlight: S.R. Klein, Phys. Rev. C **97,** 054903 (2018)

• $\sqrt{\langle p_T^2 \rangle}$ is consistent with EPA-QED calculation

Excess of $\mu^+\mu^-$

 Well described by lowest-order EPA-QED predictions Indication of both 2nd- and 4th-order azimuthal angular modulation in $\mu^+\mu^-$

STAR

EM Field Dependence of e^+e^- Excess

- The isobar collisions provide a unique opportunity to test the electromagnetic field dependence $^{96}_{44}$ Ru vs $^{96}_{40}$ Zr
- At very low p_T (< 0.15 GeV/c) e^+e^- production is dominated by $\gamma\gamma \rightarrow e^+e^-$
 - Hadronic contributions are similar in Ru + Ru and Zr + Zr
 - Ratio is consistent with $\left(\frac{Z_{Ru}}{Z_{Tr}}\right)^4 = \left(\frac{44}{40}\right)^4$
 - Initial EM field is different in Ru + Ru versus $\mathrm{Zr} + \mathrm{Zr}$ by $\sim 3\sigma$

EM Field Dependence of J/ψ Excess

J/ψ in d + Au UPC

- First measurement of J/ψ in d + Au ultraperipheral collisions
- Probes the gluon density of the deuteron
 - Important step to understanding nuclear effects in heavier nuclei
- Spectator tagging technique explored for the first time at a collider facility
 - Serve as an experimental baseline for the EIC

dσ^{(γ* ₁}

N. Lewis, Users' Meeting 2022

(dN/dp^T)_{Au+Au}

 $(dN/dp_T)_{\gamma+Au}$

0.9

Low p_T Baryon Enhancement in γA

J. D. Brandenburg *et al*, arXiv 2205.05685

• Double ratio: $\bar{p}/p < 1$ at lower p_T

 $(\pi^{-}/\pi^{+})_{\gamma+Au} / (\pi^{-}/\pi^{+})_{Au+Au \ 60-80\%}$ $(K^{-}/K^{+})_{\gamma+Au} / (K^{-}/K^{+})_{Au+Au \ 60-80\%}$

 $(\bar{p}/p)_{\gamma+Au} / (\bar{p}/p)_{Au+Au \ 60-80\%}$

Au+Au $\sqrt{s_{NN}}$ = 54.4 GeV (γ +Au-rich), $|\eta|$ <1.0

STAR *Preliminary*

Statistical Uncertainty Only

Ш

Ш

- Soft baryon stopping that is **stronger** in γA compared to peripheral AA
 - Indication of a baryon junction existing inside nucleon

D. Kharzeev, Physics Letters B **378**, 238-246 (1996)

6/7/2022

Low p_T Baryon Enhancement in γA

J. D. Brandenburg *et al*, arXiv 2205.05685

- Double ratio: $\bar{p}/p < 1$ at lower p_T
 - Soft baryon stopping that is **stronger** in γA compared to peripheral AA
 - Ratio is smaller at higher rapidity (*A*-going side)

Collectivity in γA

J. D. Brandenburg *et al*, arXiv 2205.05685

• No near-side ridge in the selected multiplicity class

• Higher energy and event activity events under investigation with STAR forward upgrades

Elastic Cross Section in p + p Collisions

р

Measured using Roman Pots

Comparing $p + p \rightarrow p + p$ cross section with $p + \bar{p} \rightarrow p + \bar{p}$

IP

р

Testing the Odderon hypothesis in a model independent way

Central Exclusive Production in p + p

• Two pomerons fuse into an $h^+h^- \rightarrow$ measured with STAR central PID detectors

 $p_T^{\text{miss}} = 0 = \left(\vec{p}_1 + \vec{p}_2 + \vec{h}_+ + \vec{h}_-\right)_T$

6/7/2022

Summary

Ultra-peripheral collisions provide a unique opportunity to study nuclei

- Discovery of Breit-Wheeler process and vacuum bifringence
- Discovery of novel form of quantum entanglement in diffractive ρ
- Energy and lepton dependence of Breit-Wheeler process in A + A
- Probe gluon density through $\gamma + d$
- Investigating pompon exchange in p + p

The STAR forward upgrade provides tracking and calorimetry close to the beam line $2.5 < \eta < 4$

Important for studying photoproduction

- Diffractive $ho^0, \phi,$ and J/ψ
- Dijets cross sections
- Baryon stopping and charged particle correlations

BackUp

STAR