Measurement of W^{\pm} cross section ratio in ppcollisions at STAR

Jae D. Nam,

for the STAR collaboration

Supported in part by:

Office of Science

Jae D. Nam

Motivation

- The \bar{d}/\bar{u} flavor asymmetry
 - Predominantly measured via Drell-Yan.
 - Tension between measurements around the valence region.
- *W* production at STAR/RHIC
 - LO production sensitive to \bar{d} (W^+) and \bar{u} (W^-).
 - The cross-section ratio $\sigma_{W^+}/\sigma_{W^-}$ can be used to probe \bar{d}/\bar{u} ;

$$R_W = \frac{\sigma_{W^+}}{\sigma_{W^-}} \approx \frac{u(x_1) \,\bar{d}(x_2) + u(x_2) \,\bar{d}(x_1)}{\bar{u}(x_1) \,d(x_2) + \bar{u}(x_2) \,d(x_1)}$$

- Naturally provides a large momentum scale, $Q^2 \approx M_W^2$.
- Sensitive to \bar{d}/\bar{u} in the region 0.1 < x < 0.3 in the STAR mid-rapidity ($|\eta| < 1$).
- Can be further stretched to 0.06 < x < 0.4 with Endcap EM Calorimeter (EEMC).
- Characteristically produces final state v.
- Isolated high p_T electron.

Relativistic Heavy Ion Collider (RHIC)

- RHIC is the world's first polarized *pp* collider.
- $L \approx 700 \ pb^{-1}$ of pp collision data with sufficiently high collision energy for *W* production.
 - Measurement with $\sim 350 \ pb^{-1}$ of data has been published.
 - The remaining $\sim 350 \ pb^{-1}$ has been granted preliminary release.

Jae D. Nam

W selection

TPC track extrapolated to BEMC tower grid

Event level selection

- High \vec{p}_T^{bal} (= $\vec{p}_T^e + \Sigma \vec{p}_T^{recoil}$) event
- Isolated electron $(E_T^{2\times 2}/E_T^{4\times 4})$ with high p_T
- No energy in the opposite cone.
- Charge separation from TPC + EMC ($Q_e \times E_T/p_T$).
- W tagging methods
 - Lepton-tagging
 - Indirect, but smaller systematic uncertainty.
 - *W* reconstruction with MC
 - The missing neutrino momentum is reconstructed via;

$$\vec{p}_T^{\nu} = -\vec{p}_T^{bal}$$

$$M_W^2 = (E_e + E_\nu)^2 - (\vec{p}_e + \vec{p}_\nu)^2$$

• Correction for unmeasured tracks and clusters based on MC study.

Background contributions

- Electroweak ($N_{Z \rightarrow ee}$, $N_{W \rightarrow \tau \nu}$)
 - Z decays with one unidentified electron
 - Leptonic decay of τ^W
 - Estimated with MC
- Second EEMC (N_{EEMC})
 - Accounts for missing backward coverage $(-2 < \eta < -1)$
 - Estimated by mirroring the effect of existing EEMC (1 $<\eta<$ 2)
- Data-driven QCD (N_{QCD})
 - Remaining background contributions that pass the selection processes.
 - Distribution obtained by using events that do not pass the $p_{T,bal}$ cut.

Z reconstruction

 The leptonic decay of Z boson can be observed at STAR

$$pp \rightarrow Z/\gamma^* \rightarrow e^+e^-$$

- Z candidates are selected by tagging two isolated electrons with opposite charges.
 - Clean identification of Z candidates.
- M_Z can be reconstructed and used to fine-tune the BEMC calibration.
- Efficiencies estimated with Pythia and GEANT.

Results: W^+/W^- (lepton-tagging)

- W^+/W^- cross-section ratio measurement with STAR 2011-2013 data has been published [PRD 103 (2021) 1, 012001].
- Preliminary measurement with STAR 2017 data
 - Only the barrel region, $|\eta| < 1$ (Endcap study in progress).
 - Systematic uncertainty driven by BEMC gain correction.
 - Doubles the statistics of the published result ($L \approx 700 \ pb^{-1}$).
 - Overall good agreement with the current PDF distributions.

Results: *W*/*Z* **cross-section ratio**

Results: Absolute cross sections

• Measurement of the total cross sections.

$$\sigma_{W/Z}^{fid} = \frac{N_{sig} - N_{bg}}{\epsilon \int L dt}$$
$$\sigma_{W/Z}^{tot} = \sigma_{W/Z}^{fid} / A_{W/Z}$$

- Acceptance correction onto 2011 sample ($\sqrt{s} = 500 \text{ GeV}$) to match 2012 and 2013 samples ($\sqrt{s} = 510 \text{ GeV}$) by using FEWZ [PRD 86 (2012) 094034].
- Agreement between NLO pQCD calculation and experimental results for different bosons over a wide energy range
- Run 2017 result in progress.

STAR, PRD 103 (2021) 1, 012001

Impact of STAR data

- STAR results have been included in recent global fits.
- STAR data have a significant impact on the sea quark distributions around $x \sim 0.2$.

TAR

Results: W^+/W^- (W reconstruction)

- W^+/W^- cross-section ratio with STAR Run 2011+2012+2013 ($L \approx 360 p b^{-1}$)
 - Systematics driven by *W* rapidity reconstruction.
 - Run 17 study in progress

10/5/2021

11

Results: Differential Z cross section

- Preliminary measurement of $d\sigma/dp_T^{Z^0}$.
 - Systematic uncertainty driven by BEMC gain unceratinty.
- Help constrain unpolarized TMDPDFs.
- Theory curves based on recent extractions of TMDPDFs.

Summary

- W^+/W^- cross sections and their ratio have been measured as a function of lepton pseudorapidity η^e with STAR p + p collision data at $\sqrt{s} = 510 \text{ GeV}$.
 - Published with the combined dataset (2011+2012+2013, $L \approx 350 \ pb^{-1}$).
 - Help constrain the \bar{d} and \bar{u} sea quark PDFs, complementary to DY measurements.
 - In addition, W^{\pm} and Z absolute cross sections are measured.
- Preliminary release of results using STAR 2017 data.
 - Effectively doubles the statistics of these measurements.
 - Only deals with the cross-section ratio measurement at the barrel region for the moment (endcap + absolute cross section in progress).
- Preliminary results with *W* reconstruction method.
 - More direct measurement than the lepton-tagging method.
 - Larger systematic uncertainty.
- Preliminary results of differential cross section $d\sigma/dp_T^Z$.
 - Constraints to unpolarized TMDPDFs.
- New theory curves & global fits are out since recent publication
 - Confirms constraining power in the valence region.

Cross-section ratio

• In the *W* cross-section ratio measurement, the expression of the ratio reduces to:

$$\sigma_{W^+}/\sigma_{W^-} = \frac{N_{obs}^+}{\epsilon^+ \int Ldt} / \frac{N_{obs}^-}{\epsilon^- \int Ldt} = \frac{\epsilon^-}{\epsilon^+} \cdot \frac{N_{sig}^+ - N_{bg}^+}{N_{sig}^- - N_{bg}^-}$$

- where ϵ represents the product of the efficiencies of our selection process.

$$\epsilon = \epsilon_{trigger} \times \epsilon_{vertex} \times \epsilon_{tracking} \times \epsilon_{tagging}$$

- MC study suggests that the efficiency ratio ϵ^-/ϵ^+ is consistent with unity.
- N_{bg} represents the sum of all remaining background contributions.

$$N_{bg} = N_{W \to \tau \nu} + N_{Z \to ee} + N_{QCD} + N_{EEMC}$$

Systematic uncertainties

- Charge dependence $\delta_{\Delta\epsilon}$
 - Remaining charge dependence obtained by taking the difference between ϵ^{\pm} .
- BEMC calibration δ_{BEMC}
 - Due to imperfect BEMC calibration, obtained by taking the variation in the efficiency ratio while varying BEMC gain by the calibration unceratinty.
- Background description δ^{bg}_{OCD}
 - The uncertainty associated with the QCD background description in terms of its shape and normalization has been tested by varying $p_{T,bal}$ cut and the normalization window.
- Missing jet in QCD dijet δ_{OCD}^{dijet}
 - Dijet events are neglected when one of the two jets is outside the detector acceptance region.
 - A Pythia study was done to estimate the effect.
- (Run 2017 prel. only) BEMC gain correction $\delta_{BEMC,cor}$
 - The gain values of BEMC at STAR have been fine-tuned by reconstructing the mass of Z boson.
 - A larger BEMC correction has been observed STAR Run 2017 sample.
 - This effect has been estimated by taking the difference between the nominal sample and a test sample without the correction.

New theory curves & impact (CT18)

- Good overall shape matching
- Mismatch in the central ($0 < \eta_e < 0.5$) and forward ($\eta_e > 1$) regions.
 - Better matching expected once STAR Run 2017 data set is included

New theory curves & impact (CJ)

- Significant improvement in uncertainty when including STAR + SeaQuest.
- \bar{d}/\bar{u} now above 1 throughout all x.

FAR

New theory curves & impact (JAM)

- Significant constraining power around valence region ($x \sim 0.2$).
- Not much decisiveness in the shape.

