2025 RHIC/AGS ANNUAL USERS' MEETING

RHIC 25: A quarter century of discovery May 20-23, 2025

Brookhaven National Laboratory

Register here: https://www.bnl.gov/rhicagsaum/

An Overview of STAR Spin Physics Program: From RHIC to EIC

for the **STAR** collaboration

2025 RHIC/AGS Annual Users' Meeting

May 20-23, 2025

ePIC/EIC Workshop

May 20, 2025

Supported in part by:

Office of Science

RHIC and STAR

Relativistic Heavy Ion Collider (RHIC)

Solenoidal Tracker At RHIC (STAR)

- RHIC continues to serve as world's first and only polarized pp collider
- Facilitates hadron collisions with various hadron species and collision energies
- At RHIC, protons can be polarized either Longitudinally or Transversely w.r.t proton momentum
- Recent STAR Forward Upgrade extending the kinematic reach

Electron Ion Collider

Electron-Ion Collider (EIC)

One of the primary objectives of the ...

Electron Ion Collider: The Next QCD Frontier Understanding the glue that binds us all

Is to understand...

Spin and Three-Dimensional Structure of the Nucleon

And the questions we would like to answer include...

- What is the dynamical origin of sea quarks and gluons inside the proton?
- How does the proton spin originate at the microscopic level?
- How does confinement manifest itself in the structure of hadrons?

Unique capabilities of STAR/RHIC provide ideal tests of EIC physics, not readily available elsewhere!

Electron Ion Collider

Electron-Ion Collider (EIC)

- Highly polarized eA collider with a wide range of ion species and collision energy
- High luminosity (~2 orders of magnitude of HERA)

Electron Ion Collider

Access to $\sim 10^2$ lower values of x and a wider coverage of Q^2 at EIC \rightarrow Most powerful tool for, e.g., Spin Physics Programs

STAR Spin Program

Jaffe-Manohar Spin Decomposition

• Longitudinal Spin Program

- DIS data suggests ${\sim}30\%$ valence quark helicity contribution
- STAR provides large acceptance tracking/calorimetry and excellent particle identification
- → Access to both **quarks** and **gluon** helicity via measurements of *W*, hadrons, and jets

$$Helicity = \bigcirc - \bigcirc +$$

STAR Spin Program

• Longitudinal Spin Program

- DIS data suggests ${\sim}30\%$ valence quark helicity contribution
- STAR provides large acceptance tracking/calorimetry and excellent particle identification
- → Access to both **quarks** and **gluon** helicity via measurements of *W*, hadrons, and jets
- Transverse Spin Program

*Transverse Momentum Dependent

- Origin of large forward $A_N \rightarrow \text{TMD}$ Formalism
- Initial vs Final state effects
- 3D Tomography of the proton
- Transverse spin contribution: Transversity

2025 DUIC (ACS Appuel Hears' Masting

Transversity =

Longitudinal Spin Programs at STAR

8

Longitudinal Spin Physics

Longitudinally-polarized pp collisions at STAR allow measurements of...

- Asymmetrically produced hadronic objects
 - Inclusive-jet and dijet
 - Sensitivity to the size and functional form of gluon helicity Δg(x)
- Asymmetrically produced **EW** objects
 - W^{\pm} boson, naturally provides flavor separation
 - Probes the sea (anti-)quark helicity $\Delta \bar{u} / \Delta \bar{d}$ and its functional form

Measurements of Jet-/Dijet- A_{LL}

- STAR jet/dijet $A_{LL} \rightarrow$ probe of gluon helicity distribution in its *x*-dependent form
- STAR data favor positive gluon helicity
- Limited statistical precision for lower values of x (< 0.05)

TAR

Measurements of W-A_L

- Impact of STAR/RHIC data in global fit favoring $\Delta \overline{u} > \Delta \overline{d}$
- Also provides constraints for **non-pQCD models** of SU(2) $\overline{u}/\overline{d}$ asymmetry
- Only *loosely constrained* with currently-available RHIC + SIDIS data

Jae D. Nam

11

Investigations of Strange Helicity (Δs)

- Measurements of $\Lambda D_{LL} \rightarrow \text{Probe of } \Delta s$ and final-state effects from *Polarized FF* (PFF)
- Tests hypotheses on the origin of Λ polarization
- Measurements of $z (\equiv p_{\Lambda} \cdot p_j / p_j^2)$ dependence directly probes PFF

Expected Impact from EIC

 \rightarrow Precision measurements of g_1 with a large kinematic coverage

13

Transverse Spin Programs at STAR

Transverse Spin Physics

RHIC Spin Col., arXiv:1602.03922

• Transverse Momentum Dependent (TMD) frameworks proposes...

$$A_{N} = A_{UT}^{Sivers} sin(\phi_{s}) + A_{UT}^{Collins} sin(\phi_{s} - \phi_{H}) + \cdots$$

- Sivers Mechanism $\rightarrow S_p \cdot (p \times k_{T,q})$
 - Interplay of **initial-state** nucleon spin and parton $k_{T,q}$
 - Sensitive to Sivers TMD PDF
- Collins Mechanism
 - $\rightarrow S_q \cdot (p \times k_{T,h})$
 - Interplay of **final-state** quark spin and hadron $k_{T,h}$
 - Sensitive to transversity via Collins FF

Sensitive to

transversitv

15

Measurements of A_N with Jets

- Inclusive jet A_N consistent with 0, unlike in SIDIS \rightarrow pQCD suggests **cancellations** of u and d quarks at **initial** and **final** states
- First hint of non-zero Sivers effect in dijet in pp collisions when charge-separated:

$$2\langle k_T^u \rangle \approx \langle k_T^d \rangle, \ \langle k_T^{g+\text{sea}} \rangle \approx 0$$

2025 RHIC/AGS Annual Users' Meeting May 20-23, 2025

Investigations of Sivers Effect with Drell-Yan

Investigations of Collins Effect

- Hadron-jet correlation measurements at STAR
 - A more direct probe of **Transversity** than SIDIS: <u>Collinear</u> (pp, $h_1(x)$) vs. <u>TMD</u> (SIDIS, $h_1(x, k_T)$)
- Measurements of z and j_T probes both transversity and Collins FF, pioneering investigations of Collins effect
- Two energy modes (200 vs 500 GeV) and hadron species (pp vs. pA)
 → Tests of evolution, universality, factorization breaking

Measurements of Di-Hadron A_N

Expected Impact from EIC

Expected EIC Impact on Collins

- Opportunities at EIC
 - Access to much lower values of x compared to currently available data
 - Tests of the Non-Universal nature of Sivers effect
 - *Evolution* and *Factorization-Breaking* of Collins → Constraints on Tensor Charge
- 2025 RHIC/AGS Annual Users' Meeting May 20-23, 2025

Expected EIC Impact on Sivers

Summary

Spin Physics at RHIC

- Decisive constraints of the size and shape of Δg for x > 0.05 via jet/dijet A_{LL}
- First extraction of $\Delta \bar{d}$ and $\Delta \bar{u}$ via W- A_L
- Identification of cancellation effects of *Sivers* mechanism in *pp* collisions
- Extraction of Sivers functions with DY
- Pioneering investigations of *Collins* mechanism via *hadron-jet* correlations
- Extraction of *collinear* transversity, *Collins* FF, *Interference* FF, *di-hadron* FF

Spin Physics at EIC

- Precision measurements at extreme kinematic reach with inclusive DIS
- Excellent PID allows SIDIS measurements providing stringent constraints & complementarity
- Tests of *Non-Universality* of Sivers mechanism (*DY vs. SIDIS*)
- Direct access to *x*-dependent form of Sivers
- Tests of *Universality* of Collins mechanism
- Extraction of TMD transversity

... and much more I failed to highlight today

21

