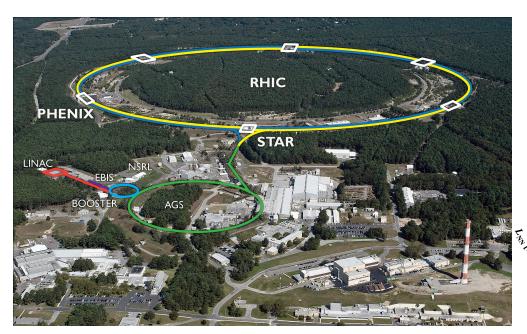


Measurements of W^+/W^- cross-section ratio in pp collisions at STAR

Jae D. Nam

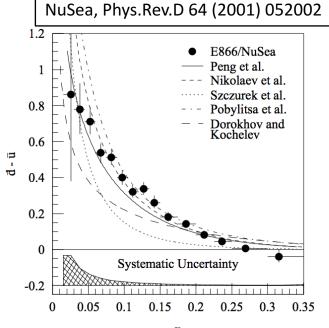
Temple Univ.

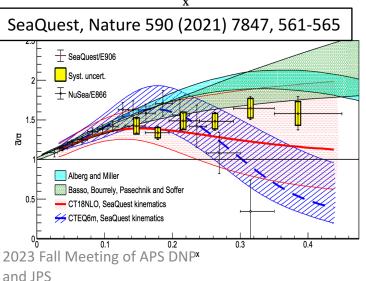
For the STAR collaboration


Supported in part by:

Office of Science

Relativistic Heavy Ion Collider





- RHIC continues to serve as the world's first and only polarized pp collider.
- Features pp collisions at $\sqrt{s} = 500/508/510$ GeV and $\sqrt{s} = 200$ GeV.
- $pA \sqrt{s_{NN}} = 200 \text{ GeV}$ and $AA \sqrt{s_{NN}} = 3 \sim 200 \text{ GeV}$ collisions.

- At RHIC, protons can be polarized either:
 - Longitudinally (along the direction of the beam)
 - → Proton spin composition
 - Transversely (perpendicular to the beam)
 - → 3D image of the proton
 - Or can be unpolarized
 - → Parton distribution functions
 - → Non-linear gluon effects

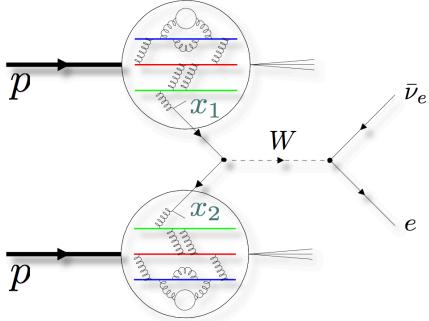
Physics case: d/\overline{u} asymmetry

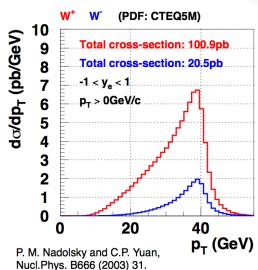
- While the valence quark (d, u) structure of the proton is well understood, the anti-quark counterpart (\bar{d}, \bar{u}) is much less constrained.
- Non-diminishing asymmetry between the antiquarks in the proton sea \bar{d} , \bar{u} is a purely non-perturbative phenomenon.
- The anti-quark ratio \bar{d}/\bar{u} is typically measured in Drell-Yan type experiments with deuterons.
- Inconsistencies among these measurements have been found, especially in the proton momentum fraction range x > 0.2.
- W measurements at RHIC may provide insight around the same x region at higher Q^2 .

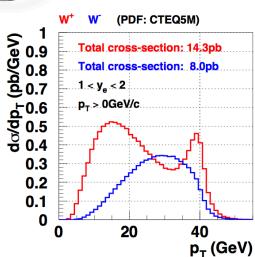
W production in pp collisions

- W^{\pm} cross sections at LO
 - $d\sigma^{W+} \propto u(x_1)\bar{d}(x_2) + u(x_2)\bar{d}(x_1)$
 - $d\sigma^{W^-} \propto \bar{u}(x_1)d(x_2) + \bar{u}(x_2)d(x_1)$

$$\to R_W = \frac{\sigma^{W+}}{\sigma^{W-}} \sim \frac{u(x_1)\bar{d}(x_2) + u(x_2)\bar{d}(x_1)}{\bar{u}(x_1)d(x_2) + \bar{u}(x_2)d(x_2)}$$

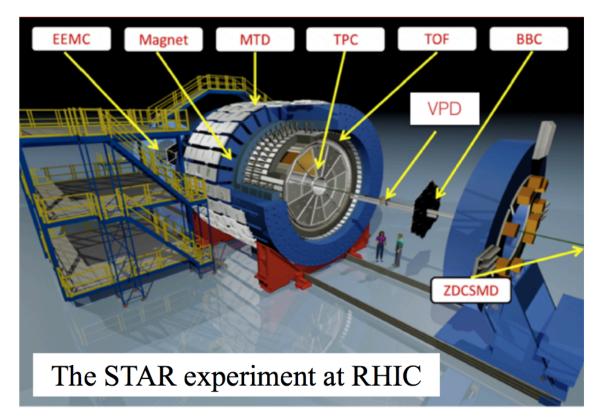

- At LO, momentum scale set by the W mass, $Q^2 \sim M_W^2$.
- Leptonic decay via $W \rightarrow ev$


•
$$\frac{d\sigma(W^{\pm} \rightarrow e\nu)}{dp_{T,e}^2} \propto \frac{(1\pm\cos\theta)^2}{M_W\cos\theta}$$

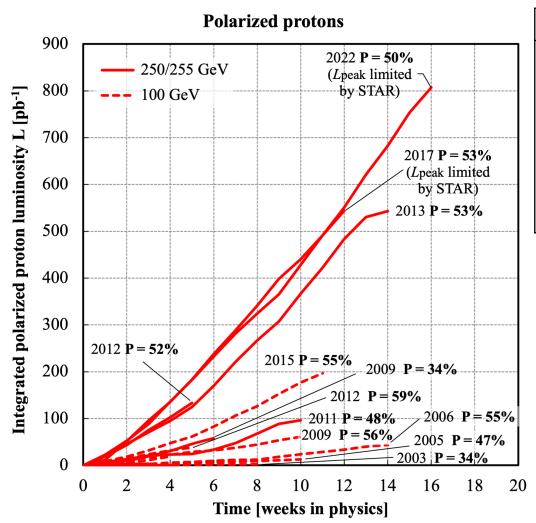

• $p_{T,e} \sim \frac{M_W}{2} \sin \theta$

- \rightarrow Jacobian peak at $p_{T,e} \sim M_W/2$
- $y_e \sim y_W + \frac{\ln 1 + \cos \theta}{\ln 1 \cos \theta}$
- \rightarrow Charge discrimination as a function of y_{ρ} .
- Key features in experiment
 - High p_T electron.
 - Electron/hadron discrimination needed.
 - Large imbalance in p_T due to missing ν .

 $^*\theta$ = angle between W pol. and electron



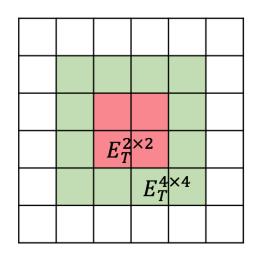
Jae D. Nam


Solenoid Tracker At RHIC (STAR)

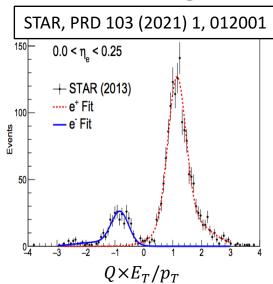
- For measurements of W bosons, it is important to achieve near- 4π detector acceptance.
- Time Projection Chamber(TPC)
 - Acceptance of $|\eta| < 1.3$.
 - Provides tracking & PID.
 - charge discrimination
- Electro-Magnetic Calorimenter
 - Barrel (BEMC): $|\eta| < 1$.
 - Endcap (EEMC): $1 < \eta < 2$.
 - Assists in electron/hadron discrimination.
 - Assists in electron charge discrimination.

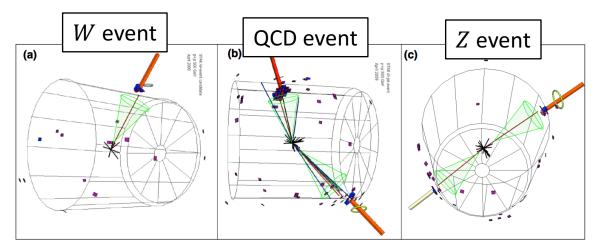
- The W bosons detected in the TPC + BEMC (barrel region) arise from a kinematic region of 0.1 < x < 0.3.
- EEMC provides coverage in the intermediate rapidity region $1 < \eta < 2$, extending the kinematic reach to 0.06 < x < 0.4.

RHIC $pp \sqrt{s} = 500/510$ GeV Run Overview

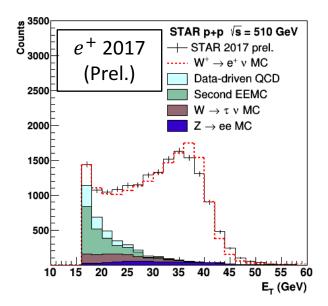


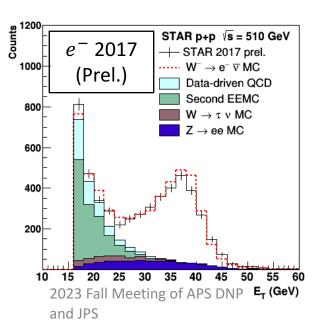
Run	\sqrt{s} (GeV)	$L(pb^{-1})$
2009	500	10
2011	500	25
2012	510	75
2013	510	250
2017	510	350
2022	508	400


- $L \sim 700 + 400 \ pb^{-1}$ of pp collisions with $\sqrt{s} \sim 500 \ \text{GeV}$ has been collected at STAR.
- Initial measurement based on Run 2009 with $L \sim 10~{\rm pb^{-1}}$. (STAR, PRD 85 092010)
- Follow up study with Run 2011-2013 with $L \sim 350 \; \mathrm{pb^{-1}}$ has been published. (STAR, PRD 103,012001)
- Preliminary study based on Run 2017 with $L \sim 350 \; \mathrm{pb^{-1}}$.
- New dataset with $L \sim 450 \; \mathrm{pb^{-1}}$ from Run 2022.


W tagging method

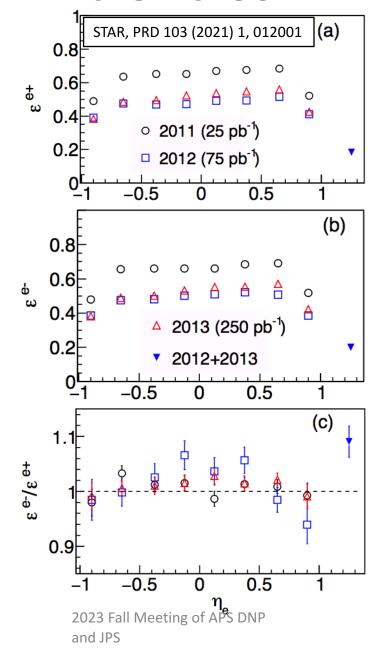
TPC track extrapolated to BEMC tower grid




2023 Fall Meeting of APS DNP and JPS

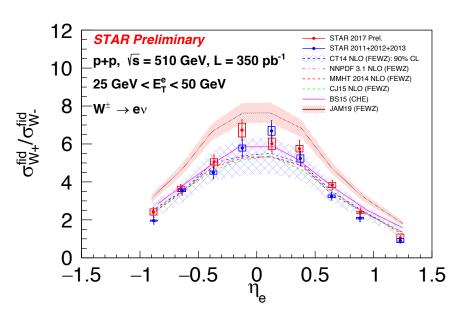
- W bosons that undergo the leptonic decay process, $W \rightarrow ev$, are tagged.
- Imbalance in p_T due to the missing neutrino. High $\vec{p}_{T,bal}$ (= $\vec{p}_{T,e} + \Sigma \vec{p}_{T,recoil}$) events are selected.
- Unlike hadrons, electrons deposit their energy in a highly concentrated region in the EMC. This isolated electron energy deposit is selected by requiring $E_T^{2\times2}/E_T^{4\times4}\sim 1$.
- Charge separation from TPC + EMC ($Q_e \times E_T/p_T$).

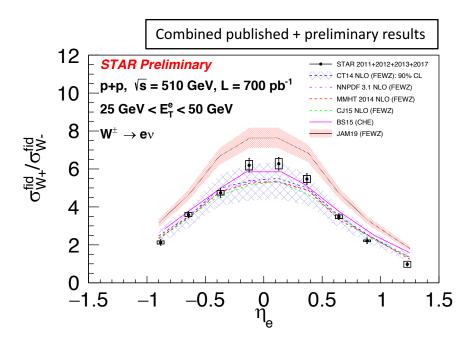
Signal/background description



- Electroweak $(N_{Z\to ee}, N_{W\to \tau\nu})$ background
 - Z decays with one unidentified electron
 - Leptonic decay of τ^W
 - Estimated with MC (Pythia)
- QCD background
 - Due to the limited acceptance and kinematic coverage, imbalance in p_T may appear in QCD events.
 - Two methods employed to estimate their contributions:
 - Second EEMC (N_{EEMC})
 - Accounts for missing backward coverage $(-2 < \eta < -1)$
 - Estimated by mirroring the effect of existing EEMC in the forward direction.
 - Data-driven QCD (N_{QCD})
 - Remaining background contribution that passes the selection process.
 - Distribution obtained by using events that do not pass the $p_{T,bal}$ cut.

Efficiencies

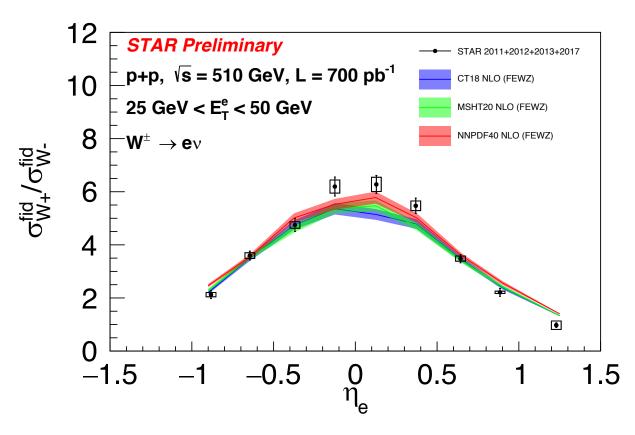

 In the W cross-section ratio measurement, the expression of the ratio reduces to:


$$\sigma_{W^{+}}/\sigma_{W^{-}} = \frac{N_{obs}^{+}}{\epsilon^{+} \int Ldt} / \frac{N_{obs}^{-}}{\epsilon^{-} \int Ldt}$$
$$= \frac{\epsilon^{-}}{\epsilon^{+}} \cdot \frac{N_{sig}^{+} - N_{bg}^{+}}{N_{sig}^{-} - N_{bg}^{-}}$$

where ϵ represents the product of the efficiencies of our selection process.

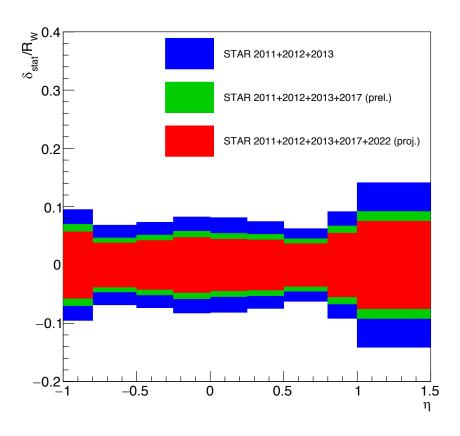
- Lower efficiency in Run 2012 and 2013 (compared to Run 2011) due to higher material budget and event pile-up caused by higher instantaneous luminosity.
- Higher tracking efficiency in 2013 than in 2012 due to improvements in tracking algorithm.
- MC study suggests that the efficiency ratio ϵ^-/ϵ^+ is consistent with unity and the deviation from unity is taken as a source of systematic uncertainty.

Results

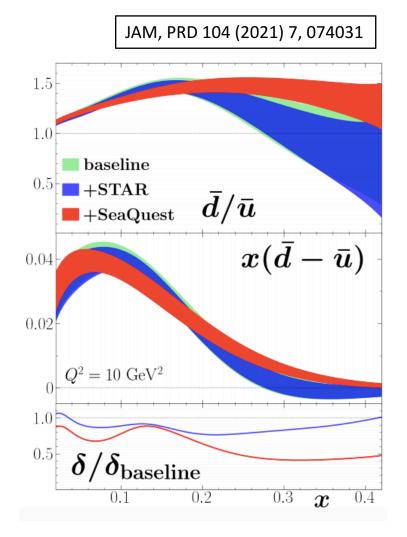

- Measurement with STAR 2011-2013 data set has been published (PRD 103 (2021) 1, 012001).
- Additional data set taken in 2017 has been analyzed and is in preliminary release.
- These measurements are consistent with each other within their uncertainties.
- Overall good agreement with the PDF distributions.
 - Unlike the other predictions, JAM19 result extracts both FF and sea quarks.

Results (continued)

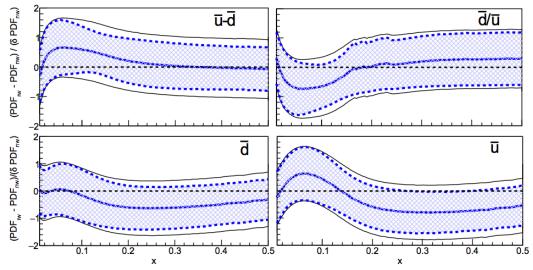
Featured PDF sets:


CT18: arXiv:1908.11394

MSHT20: EPJC 81 (2021) 4, 341 NNPDF4.0: EPJC 82 (2022) 5, 428


- SeaQuest data (NNPDF4.0) improves description of STAR data.
- However the improvement is mostly seen in $\eta_e \sim 0$.
- The endcap (1 $< \eta_e < 1.5$) still underestimated.
- Calculations at NNLO accuracy will be included in the final paper.

Results (projection)



- Projection for STAR 2022 data set
 - Combined statistics $\sim 1.1 \text{ fb}^{-1}$, concluding 500/510 GeV pp program at STAR
 - Data preparation (detector calibrations, etc.) has been initiated.

PDF impacts

STAR, PRD 103 (2021) 1, 012001 *(uses CT14MC2NLO)

- Recent publication (STAR 2011+2012+2013) has been included in global fits.
- STAR data have a moderate impact on the sea quark distributions around $x \sim 0.2$, reducing the uncertainty by ~ 20 %.

Summary & Outlook

- W^+/W^- cross-section ratio has been measured with STAR $pp \sqrt{s} = 500,510$ GeV datasets.
 - Probe \bar{d}/\bar{u} asymmetry in the proton sea at higher Q^2 , complementary to Drell-Yan measurements.
 - Results based on STAR 2011+2012+2013 ($L \approx 350~{\rm pb^{-1}}$) have been published.
 - STAR 2017 (adds additional $L \approx 350 \; \mathrm{pb^{-1}}$) dataset in preliminary state.
 - Combined results consistent with the current PDF distributions.
 - Reduction of uncertainty by $\sim 20\%$ seen from global fit analyses.

Outlook

- STAR 2017 results nearing publication.
- New STAR 2022 dataset currently being calibrated.