

• MIP selection criteria

Barrel Electromagnetic Calorimeter (BEMC)

- The BEMC comprises 4800 towers, each approximately covering an $\eta \times \phi$ region of 0.05×0.05 . $(-1 < \eta_{BEMC} < 1 \& 0 < \phi_{BEMC} < 2\pi)$
- The BEMC is used for measurements of non-hadronic particles and to trigger on high p_T processes such as jet/di-jets and W/Z events.

Vartay basad	Vertex rank $> 10^6$		
vertex based	$ z_{vtx} < 30 \ cm$		
Tracking based	Tracks must enter and exit the same tower.		
	$p_{trk} > 1 \; GeV \; \&\& \; p_{trk}^{neighbor} < 2 \; GeV$		
Pedestal	(ADC - ped) > 1.5 ped RMS		

- The MIP peak distribution is somewhat higher than in the previous runs due to an increase in the HV across the calorimeter.
- 181 towers out of 4800 excluded from the calibration after tower QA.

Run 12 pp200 Run 12 pp500		Mean	RMS
Run 13 P1 Run 13 P2 Run 15 Run 17	Run 2012 (200 GeV)	19.31	1.493
	Run 2012 (500 GeV)	18.82	2.364
	Run 2013 (Period 1)	18.62	2.181
	Run 2013 (Period 2)	18.26	2.266
Ţ	Run 2015	20.1	2.626
	Run 2017	20.79	2.73
40 50 60 ADC			

Electron Analysis

Electron track selection criteria

Tower & JP unmatching

Cluster	Good tower status of the struck tower (center tower)	Vontor	Vertex rank > 10^6	Vetoed JP
	Maximum <i>E</i> deposited in the center tower	vertex	$ z_vtx < 60 \text{ cm}$	JP 7 JP
	No tracks in the neighboring (3X3) towers	Pedestal	(ADC-ped) > 2.5 ped RMS	JP 6 JP 0
	$r_{fiducial} < 0.02$		Accept if : $0 < n_{\sigma(e^-)} < 2$ Reject if : $-1 < n_{\sigma(\pi)} < 3$	
Tracking	1 track per tower	Electron PID		
	Track hits > 25			JP 11 JP
	Must enter and exit the same tower		BHT1(VPD100), BHT2(BBCMB)	JP 5 JP 10
	$3.5 * 10^{-6} < dE/dx$ < $5.0 * 10^{-6}$	Trigger	BHT3 JP0(VPDMB30), JP1(VPDMB30) JP2	
	$0.5 < p_{trk} < 20 \; GeV$ (preselection)		*Tower & JP unmatching	1.05

Strategy

- The principle behind STAR Run 2017 BEMC calibration is identical to the previous calibrations such as Run 2009, 2012, 2013 and 2015. \Box
- The calibration is performed by comparing the energy deposited in the calorimeter by e^{\pm} tracks with the e^{\pm} tracks measured in the TPC.
- Since minimum-ionizing particles (MIPs) are abundant and well understood, they are used to find tower-by-tower relative gain.

 $C_{rel} = \frac{0.264(1+0.056\eta^2)}{4\pi}$ $ADC_{MIP} \sin(\theta)$

 e^{\pm} tracks are then grouped into 40 η -rings, s each covering 0.05 in η . The energy deposited in each ring of the calorimeter is used to compare with the momentum measurement from the TPC.

Triggered JP

 $p_{trk}(GeV)$

^Lrel $C_{abs} =$

 $p_{trk}(GeV)$

 $p_{trk}(GeV)$

Results

- Summary
 - STAR Run 2017 BEMC calibration has been performed with ~80% of the full statistics. \bullet

Run 2015 (N. Lukow) BEMC calibration departs

jet patches that fired the corresponding trigger.

from the previous calibrations by vetoing towers and

This is also has been tested with a small sample of JP

firing electron candidates for Run 2017 calibration.

- \rightarrow Effort to gain full statistics will be continued.
- \rightarrow An increase in MIP ADC distribution peak due to a change in HV.
- $\rightarrow \sim 2\%$ discrepancy in $\langle E/p \rangle$ between electron candidates firing JP and BHT triggers.
- The mismatch between JP and BHT have been improved greatly in Run 2015 calibration with the new trigger bias vetoing scheme. This has been looked into in Run 2017.
 - \rightarrow Good matching between BHT and JP tracks with the currently available statistics.
- \rightarrow This will be revisited with larger statistics with JP ADC information.

Outlook

• First look into the systematic uncertainties will be performed with BHT firing electron candidates. \rightarrow Possibly larger systematic uncertainties than in previous calibrations due to longer run period.