¹ Measurements of W^+ and W^- cross sections and ² their ratio in pp collisions at STAR

Jae D. Nam, for the STAR collaboration

3

While the unpolarized valence quark (d and u) distributions are well determined л from DIS and $pp/p\bar{p}$ experiments, their sea (anti-)quark counterparts, \bar{d} and \bar{u} , 5 are much less constrained, in particular, near the valence region (momentum 6 fraction, $x \sim 0.2$). Measurements of W^+ and W^- production in pp collider 7 experiments can be used to probe the \overline{d} and \overline{u} at a large Q^2 set by the W mass. 8 Presented in this talk are the latest updates of W^+ and W^- cross sections 9 and their ratio using the STAR pp collision data at a center-of-mass energy 10 of $\sqrt{s} = 510 \,\text{GeV}$ collected in 2017, corresponding to an integrated luminosity 11 of $350 \,\mathrm{pb}^{-1}$. The measurements were performed by tagging leptons from the 12 weak decay channel $(W \to e\nu)$ arising from the mid $(|\eta| < 1)$ and intermediate 13 rapidities $(1 < \eta < 1.5)$, probing the \bar{d} and \bar{u} within the proton momentum 14 fraction range of 0.06 < x < 0.4. This measurement will improve the precision 15 of the previous measurement performed with the STAR 2011, 2012, and 2013 16 data. A projection for the STAR 2022 data will be presented. 17