Neutral kaon femtoscopy in STAR

Diana Pawłowska for the STAR Collaboration

Warsaw University of Technology

Faculty of Physics

WARSAW UNIVERSITY OF TECHNOLOGY

GDRI - International Research Network Meeting Nantes (France), July 14 - 20, 2019

Main goals

Main goals

- study the size of the neutral kaon emitting source
- compare with other kaon systems $(K^{\pm}K^{\pm} \text{ and } K^0_SK^{\pm})$

- Main goals
- Motivation

- study the size of the neutral kaon emitting source
- compare with other kaon systems $(K^{\pm}K^{\pm} \text{ and } K^0_SK^{\pm})$

- Main goals
- Motivation

- study the size of the neutral kaon emitting source
- compare with other kaon systems (K[±]K[±] and K⁰_SK[±])

Why do we analyse kaons?

- contain strange quarks
- less affected by the feed-down from resonance decays
- smaller cross section with the hadronic matter

- Main goals
- Motivation
- The STAR experiment at RHIC

- study the size of the neutral kaon emitting source
- compare with other kaon systems $(K^{\pm}K^{\pm} \text{ and } K^0_SK^{\pm})$

Why do we analyse kaons?

- contain strange quarks
- less affected by the feed-down from resonance decays
- smaller cross section with the hadronic matter

- Main goals
- Motivation
- The STAR experiment at RHIC
- Femtoscopy

- study the size of the neutral kaon emitting source
- compare with other kaon systems $(K^{\pm}K^{\pm} \text{ and } K^0_SK^{\pm})$

Why do we analyse kaons?

- contain strange quarks
- less affected by the feed-down from resonance decays
- smaller cross section with the hadronic matter

- Main goals
- Motivation
- The STAR experiment at RHIC
- Femtoscopy
- Results
 - Analysis details
 - Purity correction
 - Correlation functions
 - Comparison with previous result

- study the size of the neutral kaon emitting source
- compare with other kaon systems $(K^{\pm}K^{\pm} \text{ and } K^0_SK^{\pm})$

Why do we analyse kaons?

- contain strange quarks
- less affected by the feed-down from resonance decays
- smaller cross section with the hadronic matter

- Main goals
- Motivation
- The STAR experiment at RHIC
- Femtoscopy
- Results
 - Analysis details
 - Purity correction
 - Correlation functions
 - Comparison with previous result
- Conclusions

- study the size of the neutral kaon emitting source
- compare with other kaon systems $(K^{\pm}K^{\pm} \text{ and } K_S^0K^{\pm})$

Why do we analyse kaons?

- contain strange quarks
- less affected by the feed-down from resonance decays
- smaller cross section with the hadronic matter

The STAR experiment at RHIC

- RHIC was built to find QGP (new and complicated phase of matter)
- The main goals of the BES program include:
 - turn-off QGP signature
 - find critical point between crossover and the first-order phase transition
 - examine the area between the hadronic and quark-gluon matter (first order phase transition)

$$\sqrt{s_{NN}}=$$
 7.7 - 200 GeV 20 MeV $<\mu_B<$ 420 MeV

Femtoscopy

Hanbury Brown and Twiss interferometry

HBT

measure the angular size of astronomical objects through the use of Michelson interferometry

Femtoscopy

examine the particle-emitting source by measuring a momentum distribution

$$C_2(\vec{p_1}, \vec{p_2}) = \frac{P_2(\vec{p_1}, \vec{p_2})}{P_1(\vec{p_1})P_1(\vec{p_2})}$$

 P_2 - the probability of finding two particles at the same place and time P_1 - the probability of finding particle 1 and 2 separately

$$C(\vec{q}) = \frac{A(\vec{q})}{B(\vec{q})}$$
$$\vec{q} = \vec{p}_2 - \vec{p}_1$$

 $A(\vec{q})$ - the measured distribution of pairs from the same event $B(\vec{q})$ - the reference distribution of pairs from mixed events

The shape of the kaon correlation function depends on:

Charged

- Quantum Statistical effects (QS)
- Final State Interactions (FSI)
 - Coulomb Interaction (COUL)
 - Strong Interaction (SI)

The shape of the kaon correlation function depends on:

Charged

- Quantum Statistical effects (QS)
- Final State Interactions (FSI)
 - Coulomb Interaction (COUL)
 - Strong Interaction (SI)

Neutral

- Quantum Statistical effects (QS)
- Final State Interactions (FSI)
 - Coulomb Interaction (COUL)
 - Strong Interaction (SI)

Fitting procedure

• The QS correlation function (Gaussian)

$$C(q_{inv}) = 1 + \lambda \exp[-R_{inv}^2 q_{inv}^2]$$

 λ - the correlation strength R_{inv} - the size of the particle-emitting source

Fitting procedure

The QS correlation function (Gaussian)

$$C(q_{inv}) = 1 + \lambda \exp[-R_{inv}^2 q_{inv}^2]$$

 Final State Interaction Lednicky & Lyuboshitz model

R.Lednicky and V.L. Lyuboshitz, Sov.J.Nucl.Phys. 35, 770 (1982)

 λ - the correlation strength R_{inv} - the size of the particle-emitting source

Results

Analysis details

- 1D Femtoscopy of $K^0_S K^0_S$ pairs
- Au+Au collisions at $\sqrt{s_{NN}}=$ 200 GeV
- $K_S^0 \to \pi^+ + \pi^-$ (69.20±0.05) %
- 1 centrality: 0-80% (minimum-bias events)

Daughter track cuts

Cut	π^+	π^-
$p_T \; [GeV/c]$	0.2-1.2	0.2-1.2
DCA to the primary vertex [cm]	>1.3	>1.3
minimum TPC hits	15	15
$ N_{\sigma\pi} $	<3	<3
$ N_{\sigma K} $	>3	>3
$ N_{\sigma p} $	>3	>3

*DCA - distance of closest approach

Armenteros-Podolanski plot

the kinematic properties of the ${\cal V}^0$ candidates

ALICE Collaboration, Eur. Phys. J. C71 (2011) 1594

- decay products of the $K^0_S \to \pi^+ + \pi^-$ have the same mass and therefore their momenta are distributed symmetrically on average
- for $\Lambda^0 \to p + \pi$ the proton (antiproton) takes on average a larger part of the momentum and as a result the distribution is asymmetric

 q_T - the relative transverse momentum of decay products α - the longitudinal momentum asymmetry

 p_L^+ and p_L^- - the longitudinal momenta of positive and negative daughter D.Pawłowska Neutral kaon femtos

Neutral kaon selection criteria

Cut	K_s^0
$p_T [{\sf GeV/c}]$	0.2-1.5
$ \eta $	< 0.5
DCA V_0 to the primary vertex [cm]	0-0.3
DCA of daughters [cm]	0-0.3
decay lenght [cm]	>2
Armenteros q_T [GeV/c]	0.12-0.22
Armenteros $ lpha $	< 0.7
mass range [GeV/c ²]	0.488-0.51
mass from PDG 2016 [GeV/c^2]	0.498±0.006

^{*}DCA - distance of closest approach

Neutral kaon selection criteria

Signal region is symmetric Other particles, e.g. Λ and $\overline{\Lambda},$ are not noticeable

Purity correction

The pair purity, $PairPurity(q_{inv})$, is independent of q_{inv} in the range of considered invariant four-momentum difference:

$$PairPurity(q_{inv}) = \frac{S}{S+B}(p_{T,i}) \times \frac{S}{S+B}(p_{T,j}) = \sim 88\%$$

S is the number of K_s^0 in the specific range of distribution of invariant mass, B is the number of other particles in this range of distribution of invariant mass, $p_{T,i},p_{T,j}$ - transverse momentum of first and second in the pair K_s^0

Corrections to the raw correlation functions were applied according to the expression:

$$C_{corrected}(q_{inv}) = \frac{C_{measured}(q_{inv}) - 1}{PairPurity(q_{inv})} + 1$$

Gaussian fit

Before purity correction

Radius [fm]	λ
5.08 ± 0.19	0.630 ± 0.051

After purity correction

Radius [fm]	λ
4.72 ± 0.20	0.701 ± 0.056

Smaller values of source's radii after corrections (larger statistical uncertainties) and different values of λ parameter (larger for correlations after purity corrections)

Comparison with previous result

Neutral kaon interferometry in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV Phys. Rev. C 74 (2006) 54902

- Time Projection Chamber (TPC) and Zero Degree Calorimeter (ZDC) central trigger
- only central events 0-10%
- about 3 K_S^0 per event

Cut			
$p_T [{\sf GeV/c}]$	0.5-3.5		
$ \eta $	<1.5		
DCA V_0 to the primary vertex [cm]	0-0.3		
DCA of daughters [cm]	< 0.3 - 0.8		
decay lenght [cm]	> 2 - 6		
mass range [GeV/c ²]	0.48-0.51		

Comparison with previous result

- similar source sizes are determined
- the shape of the correlation functions before and after applying the purity correction is similar

Conclusions

- the neutral kaon correlations at $\sqrt{s_{NN}}=$ 200 GeV in minimum-bias events (0-80%)
- purity correction is done
- the source sizes using Gaussian fit are obtained
- comparison with the published data from 2006
 - similar shape of the correlation functions and extracted femtoscopic parameters

Future plan:

- measure neutral kaon correlation function for BES energies
- measure correlation function for $K_S^0K^\pm$

Thank you for your attention!