$^4_{\Lambda}$ He Production in $\sqrt{s_{NN}}=3~{\rm GeV}$ Au+Au Collisions

Fengyi Zhao

(for the STAR Collaboration)

March 18, 2025

Abstract

10

11 12

13

14

15

Hypernuclei, bound states of nuclei with one or more hyperons, serve as a natural laboratory to investigate the hyperon-nucleon (YN) interaction. High-baryon density matter can be created in heavy-ion collisions at a collision energy of a few GeV/u, which provides a unique opportunity to study the YN interaction and production mechanism of hypernuclei. Comparison of $^4_\Lambda {\rm He}$ yield with its isobar $^4_\Lambda {\rm H}$ may shed light on the $\Lambda\text{--}t$ and $\Lambda\text{--}^3{\rm He}$ interactions.

In this talk, we will present the new results on the $^4_\Lambda {\rm He}$ differential yield as a function of rapidity and transverse momentum. The yield is measured in $\sqrt{s_{NN}}=3~{\rm GeV~Au+Au}$ 0-50% central collisions, and the data is collected by the STAR experiment with fixed-target mode. $^4_\Lambda {\rm He}$ is reconstructed via its three-body decay channel $^4_\Lambda {\rm He} \rightarrow ^3 {\rm He} + p + \pi^-$. We find that the rapidity distributions of $^4_\Lambda {\rm He}$ are similar to those of $^4_\Lambda {\rm H}$, and the differential yield ratios of $^4_\Lambda {\rm He}/^4_\Lambda {\rm H}$ are consistent to those of $^3_\Lambda {\rm He}/t$ within uncertainties. The observed yield ratios can be described by both the JAM plus a coalescence afterburner and the canonical thermal model.