System size and energy dependence of high-p_T triggered correlations in STAR Christine Nattrass (Yale) for the STAR Collaboration

Outline

- Introduction
- The Jet
- The Ridge
- Theory
- Conclusions

Motivation – Jet and Ridge

- In d+Au narrow peak narrow in $\Delta \Phi$, $\Delta \eta$ even for small p_T^{trigger}
- Long-range pseudorapidity ($\Delta\eta$) correlations observed by STAR in Au+Au at intermediate p_T
- Significant contribution to the near-side yield in central Au+Au at intermediate $p_T^{assoc}, p_T^{trigger}$
- Yield/trigger number of particles in p_T^{assoc} range associated with trigger particle with $p_T^{trigger}$ range

Extent of *Ridge* in $\Delta \eta$

- *Ridge* yield approximately independent of $\Delta \eta$ in STAR acceptance
 - PHOBOS (arXiv:0804.3038v3) showed independence on $\Delta \eta$ out to $\Delta \eta = 4$
- Jet increases with $p_T^{trigger}$, Ridge roughly constant Christine Nattrass (STAR), Hot Quarks, August 23, 2008

- *Ridge* previously observed to be independent in $\Delta \eta$ in Au+Au
- To determine relative contributions, find yields for near-side ($-1 < \Delta \Phi < 1$), take $\Delta \Phi$ projections in Au+Au 0-10% STAR preliminary nucl-ex/0701074

- *Ridge* previously observed to be independent in $\Delta\eta$ in Au+Au
- To determine relative contributions, find yields for near-side ($-1 < \Delta \Phi < 1$), take $\Delta \Phi$ projections in nucl-ex/0701074 Au+Au 0-10% STAR preliminary
 - -0.75<Δη<0.75 *Jet* + *Ridge*

5

- *Ridge* previously observed to be independent in $\Delta\eta$ in Au+Au
- To determine relative contributions, find yields for near-side ($-1 < \Delta \Phi < 1$), take $\Delta \Phi$ projections in nucl-ex/0701074 Au+Au 0-10% STAR preliminary
 - -0.75<Δη<0.75 *Jet* + *Ridge*
 - $0.75 < |\Delta \eta| < 1.75$ *Ridge*

5

- *Ridge* previously observed to be independent in $\Delta\eta$ in Au+Au
- To determine relative contributions, find yields for near-side ($-1 < \Delta \Phi < 1$), take $\Delta \Phi$ projections in nucl-ex/0701074 Au+Au 0-10% STAR preliminary
 - -0.75<Δη<0.75 *Jet* + *Ridge*
 - $0.75 < |\Delta \eta| < 1.75$ *Ridge*
 - Jet = (Jet + Ridge) -*Ridge**.75/1.0

5

- *Ridge* previously observed to be independent in $\Delta \eta$ in Au+Au
- To determine relative contributions, find yields for near-side ($-1 < \Delta \Phi < 1$), take $\Delta \Phi$ projections in Au+Au 0-10% STAR preliminary nucl-ex/0701074
 - -0.75<Δη<0.75 *Jet* + *Ridge*
 - $0.75 < |\Delta \eta| < 1.75$ *Ridge*
 - $Jet = (Jet + Ridge) Ridge^*.75/1.0$
 - *Ridge* = yield from -1.75 $<\Delta\eta$ <1.75 – *Jet* yield

- *Ridge* previously observed to be independent in $\Delta \eta$ in Au+Au
- To determine relative contributions, find yields for near-side (-1< $\Delta\Phi$ <1), take $\Delta\Phi$ projections in Au+Au 0-10% STAR preliminary nucl-ex/0701074
 - -0.75<Δη<0.75 *Jet* + *Ridge*
 - $0.75 < |\Delta \eta| < 1.75$ *Ridge*
 - $Jet = (Jet + Ridge) Ridge^*.75/1.0$
 - Ridge = yield from -1.75< $\Delta \eta$ <1.75 – Jet yield
- Flow contributions to *Jet* cancel
 - v_2 independent of η for $|\eta| < 1$
 - Phys. Rev. C72, 051901(R) (2005), Phys. Rev. Lett. 94, 122303 (2005)

- *Ridge* previously observed to be independent in $\Delta \eta$ in Au+Au
- To determine relative contributions, find yields for near-side ($-1 < \Delta \Phi < 1$), take $\Delta \Phi$ projections in Au+Au 0-10% STAR preliminary nucl-ex/0701074
 - -0.75<Δη<0.75 *Jet* + *Ridge*
 - $0.75 < |\Delta \eta| < 1.75$ *Ridge*
 - $Jet = (Jet + Ridge) Ridge^*.75/1.0$
 - Ridge = yield from -1.75< $\Delta \eta$ <1.75 – Jet yield
- Flow contributions to *Jet* cancel

- v_2 independent of η for $|\eta| < 1$
 - Phys. Rev. C72, 051901(R) (2005), Phys. Rev. Lett. 94, 122303 (2005)
- $3.0 < p_T^{\text{trigger}} < 6.0 \text{ GeV/c}; p_T^{\text{assoc}} > 1.5 \text{ GeV/c}$ unless otherwise stated

• Pythia 8.1 describes trends in data up to a scaling factor

- Gets energy dependence right \rightarrow this is a pQCD effect
- Stronger deviations at low p_T^{trigger} , as expected

Pythia comparisons

- What can Pythia tell us?
 - Higher z_T (lower jet energy) in 62 GeV for same p_T^{trigger}

pTHatMin = the parameter in Pythia for the minimum transverse momentum in the hard subprocess Christine Nattrass (STAR), Hot Quarks, August 23, 2008

Pythia comparisons

8

- What can Pythia tell us?
 - Higher z_T (lower jet energy) in 62 GeV for same p_T^{trigger}

pTHatMin = the parameter in Pythia for the minimum transverse momentum in the hard subprocess **Christine Nattrass (STAR), Hot Quarks, August 23, 2008**

- No system dependence
- Pythia 8.1 slightly harder than data
- Diverges slightly from Pythia 8.1 at lower p_T^{associated}

Christine Nattrass (STAR), Hot Quarks, August 23, 2008

	$\sqrt{s_{_{\rm NN}}} = 62 \text{ GeV}$	$\sqrt{s_{_{ m NN}}} = 200 { m GeV}$
Cu+Cu	317 ± 26	445 ± 20
Au+Au	355 ± 21	478 ± 8
d+Au		469 ± 8
Pythia	417 ± 9	491 ± 3
Statistical errors only		

Inverse slope parameter

J. Bielcikova (STAR), arXiv:0806.2261/nucl-ex C. Nattrass (STAR), arXiv:0804.4683/nucl-ex

- No system dependence
- Some deviations from Pythia 8.1 with increase in N_{part}
 - Incomplete *Ridge* subtraction?
 - Jet modification at low p_T ?

Christine Nattrass (STAR), Hot Quarks, August 23, 2008

J. Bielcikova (STAR), arXiv:0806.2261/nucl-ex 10 C. Nattrass (STAR), arXiv:0804.4683/nucl-ex

Jet composition

 Baryon/meson ratios in *Jet* in Cu+Cu and Au+Au similar to p+p for both strange and non-strange particles

Conclusions: Jet

- Pythia describes data well
 - Scaling factor needed but Pythia 8.1 is not as tuned as earlier versions
 - Energy dependence in *Jet* is pQCD effect
 - Trends for p_T^{trigger} , p_T^{assoc} dependence right
- Particle ratios similar to p+p
- → *Jet* production mechanism dominated by fragmentation
 - Separation of Jet and Ridge works

The *Ridge*

• No system dependence at given N_{part}

Christine Nattrass (STAR), Hot Quarks, August 23, 2008

J. Bielcikova (STAR), arXiv:0806.2261/nucl-ex 14 C. Nattrass (STAR), arXiv:0804.4683/nucl-ex

- No system dependence at given N_{part}
- *Ridge/Jet* Ratio independent of collision energy

Ridge yield vs. p_T^{trigger} in Au+Au

• *Ridge* yield persists to high p_T^{trigger}

Ridge yield vs. p_T associated in Au+Au

• Spectra of particles associated with *Ridge* similar to inclusive

Ridge composition

• Baryon/meson ratios in *Ridge* similar to bulk for both strange and non-strange particles

Conclusions: *Ridge* • Extensive data on Ridge

- Cu+Cu, Au+Au consistent at same N_{part}
- *Ridge/Jet* ratio independent of energy
- Persists to high p_T^{trigger}
- *Ridge* looks like bulk
 - $p_T^{associated}$ dependence, particle composition
- *Ridge* larger in plane (not shown, arXiv:0807.4606v1)
- Particles in *Ridge* not correlated with each other in $\Delta\eta$ (not shown, arXiv:0804.4417v1)
- *Jet* agreement between different systems, with scaled Pythia
 - Simulations can be used to approximate z_T distribution for comparisons of data to models
 - More steeply falling jet spectrum in 62 GeV → stronger bias towards unmodified/surface jets

• Could explain smaller Ridge yield in 62 GeV Christine Nattrass (STAR), Hot Quarks, August 23, 2008

• Radiated gluons broadened in pseudorapidity

Longitudinal flow, Armesto et al, PRL 93 (2004) QCD magnetic fields, Majumder et al,Phys.Rev.Lett.99:042301,2007 Anisotropic plasma, P. Romatschke, PRC,75014901 (2007)

- So far unable to make enough $\pi \frac{\pi}{\pi/2}$

Radiated gluons broadened in pseudorapidity

Longitudinal flow, Armesto et al, PRL 93 (2004) QCD magnetic fields, Majumder et al, Phys.Rev.Lett.99:042301,2007 Anisotropic plasma, P. Romatschke, PRC, 75014901 (2007)

- So far unable to make enough π Ridge

Interaction of jet+medium

Momentum kick from jet, C.-Y. Wong, Phys.Rev.C76:054908,2007 Medium heating + recombination, Chiu & Hwa, PRC72, 034903

- Agrees with data but lots of fits to the data

 $-\pi/2$

Radiated gluons broadened in pseudorapidity

Longitudinal flow, Armesto et al, PRL 93 (2004) QCD magnetic fields, Majumder et al, Phys.Rev.Lett.99:042301,2007 Anisotropic plasma, P. Romatschke, PRC,75014901 (2007)

- So far unable to make enough^{π} Ridge
- Interaction of jet+medium

Momentum kick from jet, C.-Y. Wong, Phys.Rev.C76:054908,2007 Medium heating + recombination, Chiu & Hwa, PRC72, 034903

- Agrees with data but lots of fits to the data arXiv:0711 1991
- Radial flow+trigger bias

S. Voloshin, nucl-th/0312065, Nucl. Phys. A749, 287 C., Pruneau, S. Gavin, S. Voloshin, arXiv:0711.1991v2 E. Shurvak, Phys. Rev. C76:047901,2007

- Need more detailed **comparisons**

Christine Nattrass (STAR), Hot Quarks, August 23, 2008

-1

• Radiated gluons broadened in pseudorapidity

Longitudinal flow, Armesto et al, PRL 93 (2004) QCD magnetic fields, Majumder et al, Phys.Rev.Lett.99:042301,2007 Anisotropic plasma, P. Romatschke, PRC,75014901 (2007)

- So far unable to make enough π^{π} *Ridge*
- Interaction of jet+medium

Momentum kick from jet, C.-Y. Wong , Phys.Rev.C76:054908,2007 Medium heating + recombination, Chiu & Hwa, PRC72, 034903

- Agrees with data but lots of fits to the data
- Radial flow+trigger bias

S. Voloshin, nucl-th/0312065, Nucl. Phys. A749, 287 C.. Pruneau, S. Gavin, S. Voloshin, arXiv:0711.1991v2 E. Shuryak, *Phys.Rev.C76:047901,2007*

- Need more detailed comparisons
- → No preferred model

Conclusions

- Pythia explains trends in data well
 - Needs scaling factor but amazing it does so well
 - Energy, p_T^{trigger} , $p_T^{\text{associated}}$ dependence
- Separation of *Jet* and *Ridge* works well
- *Jet* production dominated by fragmentation
- Deviations from fragmentation/Pythia indicate modification of jet
- Extensive experimental data
- Ridge

Jet

Au+Au 0-10% STAR prelimi

460 p_{three} >2 GeV

- Models need more rigorous comparisons to data, more signatures to distinguish production mechanism
 - Reasonable agreement of Jet with Pythia
 - \rightarrow simulations can be used to convert from p_T^{trigger} to distribution of jet energies
 - \rightarrow Greater surface bias in 62 GeV could explain lower *Ridge* yield

STAR Collaboration

Argonne National Laboratory - University of Birmingham - Brookhaven National Laboratory - California Institute of Technology - University of California, Davis - University of California - University of California, Los Angeles - Carnegie Mellon University - University of Illinois at Chicago -Creighton University - Nuclear Physics Institute Prague - Laboratory for High Energy (JINR) - Particle Physics Laboratory (JINR) - University of Frankfurt - Institute of Physics, Bhubaneswar - Indian Institute of Technology, Mumbai - Indiana University, Bloomington - Institut de Recherches Subatomiques - University of Jammu - Kent State University -Institute of Modern Physics, Lanzhou - Lawrence Berkeley National Laboratory - Massachusetts Institute of Technology - Max-Planck-Institut fuer Physik - Michigan State University - Moscow Engineering Physics Institute - City College of New York - NIKHEF and Utrecht University -Ohio State University, Columbus - Panjab University - Pennsylvania State University - Institute of High Energy Physics, Protvino, Russia - Purdue University - Pusan National University, Pusan, Republic of Korea -University of Rajasthan, Jaipur - Rice University - Universidade de Sao Paulo - University of Science & Technology of China - Shanghai Institute of Applied Physics - SUBATECH, Nantes, France - Texas A&M University -University of Texas - Tsinghua University - Valparaiso University - Variable Energy Cyclotron Centre, Kolkata, India - Warsaw University of Technology
 University of Washington - Wayne State University - Institute of Particle
 Physics, CCNU (HZNU), Wuhan - Yale University - University of Zagreb