Supported in part by

Office of Science

Measuring Local Parton Density Fluctuations via Proton Clustering

 $\bullet \bullet \bullet$

Dylan Neff

for the STAR Collaboration

University of California Los Angeles

12/2/2022

CPOD 2022

Motivation

- Map out QCD phase diagram via BES, specifically QGP to hadron gas transition
- Search for signal of clustering which may indicate a first order phase transition

Data Set - Au+Au Beam Energy Scan I

√s _{NN} (GeV)	Triggers	Minimum Bias Events (million)	0-5% Central Events (million)	AMPT 0-5% Central Events (million)
7.7	290001, 290004	3.1	0.17	1.61
11.5	310004, 310014	7.4	0.42	1.46
19.6	340001, 340011, 340021	17	0.91	1.42
27	360001	32	1.8	1.60
39	280001	88	5.7	1.56
62.4	270001, 270011, 270021	47	3.0	1.52

Proton Selection|y| < 0.5DCA < 1.0</td> $|n\sigma_{proton}| < 2.0$ 1.0 for 27 GeV $0.4 < p_T < 0.8 \text{ GeV & } p < 1.0 \text{ GeV}$ $0.8 < p_T < 2.0 \text{ GeV & } p < 3.0 \text{ GeV}$ $0.8 < p_T < 2.0 \text{ GeV & } p < 3.0 \text{ GeV}$ $\& 0.6 < m^2 < 1.2 \text{ GeV}$

Event Rejections Implemented:

- Pile-up
- Dca-xy Bad Events
- Bad Runs

Corrections Not Implemented:

- Efficiency
- Centrality Bin Width

Centrality Definition:

Charged particles within $|\eta| < 1$ excluding protons

Analysis Goal

- Look for azimuthal correlations among protons indicative of clustering → possible sign of a first order phase transition
- X Luo https://indico.ihep.ac.cn/event/12478/
- Compare proton multiplicities in azimuthal partitions to uncorrelated expectation

Azimuthal Partitioning

Partition the azimuth in each event and histogram particle tracks Histogram bin contents over many events

AMPT Protons in Event vs Protons in Partition 39GeV, 0-5% Centrality, 120° Partitions, 1 Sample per Event

Important Dimensions:

• Total Protons per Event

• Partition Width

Procedure carried out identically for raw and mixed event data

Dylan Neff STAR CPOD 2022

Event Resampling

AMPT Protons in Event vs Protons in Partition AMPT Protons in Event vs Protons in Partition 39GeV, 0-5% Centrality, 120° Partitions, 1 Sample per Event 39GeV, 0-5% Centrality, 120° Partitions, 72 Samples per Event 106 - 104 40 40 105 Protons in Event 00 10³ ш 30 104 10³ - 10² ቴ 20 ቴ 20 Number 10² 10 10¹ 10 · 10¹ mean mean max max 100 25 10 15 20 25 10 15 20 Number of Protons in Partition Number of Protons in Partition

90°

Samples: 180

Mixed Events

Each raw event is sorted into a class based on energy, centrality, vertex z position, and event plane angle

Select one particle track per event from a pool of (~150) raw events to generate mixed events

Goal:

Wash out event-by-event effects (fluctuations) while capturing global effects (detector efficiency, flow)

Compare to Binomial

Analyze Standard Deviation

Compare standard deviation of each slice to binomial

Mixed very similar to binomial, raw data is significantly smaller

Divide by Mixed

AMPTLin, HePhys. Rev. C 96, 014910MUSIC+FISTVovchenko et alPhys. Rev. C 105, 014904MUSIC+FIST EVVovchenko et alarXiv:2208.13693

- Divide by Mixed Standard Deviation (SD) instead of binomial to wash out global effects such as efficiency dependence
- Significant deviation of raw data distribution widths from mixed data, suggesting some type of correlation

How do we interpret the SDs of these distributions?

Distribution Width Interpretation

- Standard deviation proxy for degree of igodolclustering
- Total tracks per event fixed \rightarrow clusters and voids are a packaged deal

Small standard deviation \rightarrow lack of clustering (repulsion)

Large standard deviation \rightarrow excess clustering

Correlation in Data

AMPTLin, HePhys. Rev. C 96, 014910MUSIC+FISTVovchenko et alPhys. Rev. C 105, 014904MUSIC+FIST EVVovchenko et alarXiv:2208.13693

- Divide by Mixed Standard Deviation instead of binomial to wash out global effects
- Values less than $1 \rightarrow repulsion$
- Values greater than $1 \rightarrow \text{clustering}$
- AMPT and STAR see proton repulsion. MUSIC+FIST model serves as baseline which shows weak clustering while the Excluded Volume version shows weak repulsion

MUSIC+FIST EV includes Excluded Volume effects - no two baryons coalesce within the same 1 fm volume on the hypersurface

Repulsion at All Energies

Effect appears to manifest as a function of the total number of protons per event

0-5% Centrality, 120° Partitions, 72 Samples per Event

- Search for signals of clustering in azimuthally partitioned proton multiplicity distributions
- Strong signal of proton repulsion found
 - Present in STAR data as well as AMPT and, to a smaller degree, MUSIC+FIST
 - STAR repulsion magnitude significantly greater than models
 - Further study needed to identify source and quantify magnitude of repulsion

Thanks for your attention!

Backup

Simulating Correlated Tracks

- Built simple model of correlation to test analysis
- *n* tracks in event placed one at a time igodol
 - First track has flat probability distribution in ϕ Ο
 - Each track placed produces Gaussian distortion in $P(\phi)$ Ο for all subsequent tracks
- Can model attraction (A>0) and repulsion (A<0) igodol

baseline

Width (σ)

Toy Model Visualization

- Model visualized here for a single event with large correlation *A* to demonstrate an exaggerated effect
- Tracks in the Repulsive model tend to spread out while those in the Attractive model cluster together
 Always finite probability for any \$\overline\$ due to baseline of +1 in Gaussian kernel

Width vs Total Protons

- Plot the standard deviation of distributions vs the total number of protons in each event for a handful of simulation Amplitudes
- Observe consistent linear trends with magnitude of slope correlated with *A*
- Fit each simulation to line with y-intercept fixed at 1

Mixed distributions for toy model are statistically identical to binomial

|y = mx + 1|

Can Reliably Extract Correlation

- Plotting the slope of the widths of the distributions vs the total number of protons, get good linear relationship with input simulation Amplitude
- This suggests the analysis can reliably extract the input correlation in the case of this simple model
- Changing Gaussian correlation width lead to different but still linear relationship

Slope vs Partition Width Simulation

- Dependence appears quadratic
- Curvature switches at slope=0
- Different σ different x-intercept

