An Investigation of Charm Quark Jet Spectrum and Shape Modifications in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Diptanil Roy, Matthew Kelsey For the STAR Collaboration

November 23, 2021

1 Abstract

Partons (quarks/gluons) in heavy-ion collisions interact strongly with the Quark-Gluon Plasma (QGP), and hence have their energy and shower structure modified compared to 2 those in vacuum, e.g., those produced in proton-proton collisions. Theoretical calculations predict that radiative energy loss, which is the dominant mode of energy loss for gluons and 4 light quarks in the QGP, is suppressed for heavy quarks (such as charm and bottom) at low 5 transverse momenta $(p_{\rm T})$. A measurement of the $D^0(c\bar{u})$ meson radial profile in jets from the 6 CMS experiment at the LHC hints at its modification at low $D^0 p_{\rm T}$ in heavy-ion collisions, 7 which is qualitatively different from that of the inclusive hadrons. The excellent secondary 8 vertex resolution provided by the Heavy Flavor Tracker in the STAR experiment at RHIC 9 enables reconstruction of D^0 mesons at low $p_{\rm T}$ with high significance, making STAR ideal 10 for similar measurements. 11 We report the first measurements of the D^0 meson tagged jet $p_{\rm T}$ spectra and D^0 meson 12 radial profile in anti- $k_{\rm T}$ jets from Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV at RHIC, collected 13 by the STAR experiment in 2014. We compare the results to PYTHIA-8 predictions at the 14 same center-of-mass energy. We also report the nuclear modification factor $R_{\rm CP}$ for these 15

 16 D^0 -meson tagged jets. Such measurements are expected to shed light on parton flavor and

¹⁷ mass dependencies of jet quenching, and constrain theoretical models.