

Measurements of corrected Net-Particle Distributions with STAR at RHIC

Jochen Thäder on behalf of the STAR Collaboration

Lawrence Berkeley National Laboratory

HIC for FAIR Workshop on Fluctuation and Correlation Measures in Nuclear Collisions 2015 FIAS. Frankfurt. Germany

Outline

- Motivation
- Observables and their experimental access
- Corrections / Error Estimation
- Results from Net-Proton Higher Moments
- Results from Net-Charge Higher Moments
- Outlook: Beam Energy Scan Phase II

FIAS Frankfurt

Motivation

- Event-by-event fluctuations of conserved quantities have been proposed as most direct observables for the study of the phase transition between a quark-gluon plasma and hadronic matter
 - Net-charge / net-baryon (*net-proton*) / net-strangeness

Phys. Rev. Lett. 113 (2014) 092301 Phys. Rev. Lett. 112 (2014) 032302

- Evolution of fluctuations
 - Transition between high-T QGP phase and low-T hadronic phase occurs in small ΔT and leads to rapid change in entropy and energy density
 - It is expected that these transitions cause large fluctuations of conserved quantities.
- \rightarrow Study tails of net-particle distributions

Phys. Rev. Lett. 112 (2014) 032302

Search for the QCD critical point

- Endpoint of the first order phase transition boundary.
- Experimental discovery of the QCD critical point will be
 - an excellent test of QCD theory in non-perturbative region
 - and a landmark of the exploring the QCD phase structure.

Freeze out parameters

HotQCD, PRL109, 192302(2012) WB Group, PRL111, 062005(2013)

Comparing first principal Lattice calculations with measured moments of conserved quantities (Net-Charge), one can extract the chemical freeze out parameter T and μ_B

Observables

- Higher order moments of conserved charges q
 - Charge (Q), Strangeness (S), Baryon number (B)
- Expressed by fluctuations of net-particle distributions ($\Delta N = N_{q+} N_{q-}$)
 - Net-charge, net-kaon (proxy for S), net-proton (proxy for B)
 - Sensitive to correlation length (ξ) of the system

 $\langle (\Delta N)^2 \rangle \approx \xi^2 \qquad \langle (\Delta N)^3 \rangle \approx \xi^{4.5} \quad \langle (\Delta N)^4 \rangle \approx \xi^7$

M.A.Stephanov, PRL107, 052301 (2011)

• Direct comparison with Lattice calculations via susceptibilities (χ_{q_n}) which are cumulants by assumption

$$\chi_{1} = \frac{1}{VT^{3}} \langle (\Delta N_{p}) \rangle \qquad \chi_{2} = \frac{1}{VT^{3}} \langle (\Delta N_{p})^{2} \rangle$$
$$\chi_{3} = \frac{1}{VT^{3}} \langle (\Delta N_{p})^{3} \rangle \qquad \chi_{4} = \frac{1}{VT^{3}} [\langle (\Delta N_{p})^{4} \rangle - 3 \langle (\Delta N_{p})^{2} \rangle^{2}]$$

 $\frac{Susceptibilities}{Calculable via Lattice} are calculable via Lattice QCD for small <math>\mu_B$, $\underline{Cumulants}$ via experiment

FIAS Frankfurt

Experimental Observables

- Quantified via
 - higher order moments,
 - their cumulants c_k and
 - cumulant ratios
 - To cancel volume effects

 $Mean: M = \overline{x} = c_1$ $Variance: \sigma = \sqrt{\mu_2} = c_2$ $Skewness: S = \frac{\mu_3}{\mu_2^{3/2}} = \frac{c_3}{c_2^{3/2}}$ $Kurtosis: \kappa = \frac{\mu_4}{\mu_2^2} - 3 = \frac{c_4}{c_2^2}$

From wikipedia

FIAS Frankfurt

Jochen Thaeder (LBNL)

Experimental Access

Naïvely: Measure number of particles and anti-particles per event - take the difference

- Higher order moments are extremely sensitive to
 - Detector or reconstruction/PID efficiencies
 - Event selection \rightarrow avoid pile up events (more than one collision in TPC readout window)
 - Effects on both particles and anti-particles in the same way / in different ways / only particles or anti-particles
 - Limited acceptance (ϕ/η) coverage
 - Secondary particles from weak decays (mainly protons)
 - Non-perfect PID, misidentification
 - Absorption of anti-particles in the material (anti-protons)
 - Secondary particles from the material (mainly protons)

Therefore: Correct the higher order cumulants for those effects!

- But: a normal on average correction will only correct the mean.
- ... need more sophisticated methods

Simple (Poissonian) Toy MC Study efficiency dependence c_n for ε_{q+} vs ε_{q-}

Efficiency correction Factorial Moments

• Factorize out different orders of efficiencies

$$F_{ik} \equiv \left\langle \frac{N_1!}{(N_1 - i)!} \frac{N_2!}{(N_2 - k)!} \right\rangle = \sum_{N_1 = i}^{\infty} \sum_{N_2 = k}^{\infty} P(N_1, N_2) \frac{N_1!}{(N_1 - i)!} \frac{N_2!}{(N_2 - k)!},$$
$$f_{ik} \equiv \left\langle \frac{n_1!}{(n_1 - i)!} \frac{n_2!}{(n_2 - k)!} \right\rangle = \sum_{n_1 = i}^{\infty} \sum_{n_2 = k}^{\infty} p(n_1, n_2) \frac{n_1!}{(n_1 - i)!} \frac{n_2!}{(n_2 - k)!}.$$

• Apply "flat, average" efficiency for particle/anti-particles

$$f_{ik} = p_1^i \cdot p_2^k \cdot F_{ik}$$

• Extract cumulants:

 $egin{aligned} c_1 &= pK_1, \ c_2 &= p\left(1-p
ight)N + p^2K_2, \ c_3 &= p(1-p^2)K_1 + 3p^2(1-p)\left(F_{20} - F_{02} - NK_1
ight) + p^3K_3, \end{aligned}$

See talks of Adam and Volker

A. Bzdak and V. Koch, PRC86, 044904 (2012)

Efficiency correction Local Factorial Moments

A. Bzdak and V. Koch, PRC91, 027901 (2015) X. Luo, PRC91, 034907 (2015)

- Use local factorial moments
 - Allows for non-monotonic phase-spaced dependence
 - Arbitrary binning

$$\begin{split} A_{i,k} (x_1, \dots, x_i; \bar{x}_1, \dots, \bar{x}_k) &= \langle N(x_1) [N(x_2) - \delta_{x_1, x_2}] \cdots [N(x_i) - \delta_{x_1, x_i} - \dots - \delta_{x_{i-1}, x_i}] \\ &\bar{N}(\bar{x}_1) [\bar{N}(\bar{x}_2) - \delta_{\bar{x}_1, \bar{x}_2}] \cdots [\bar{N}(\bar{x}_k) - \delta_{\bar{x}_1, \bar{x}_k} - \dots - \delta_{\bar{x}_{k-1}, \bar{x}_k}] \rangle, \\ a_{i,k} (x_1, \dots, x_i; \bar{x}_1, \dots, \bar{x}_k) &= \langle n(x_1) [n(x_2) - \delta_{x_1, x_2}] \cdots [n(x_i) - \delta_{x_1, x_i} - \dots - \delta_{x_{i-1}, x_i}] \\ &\bar{n}(\bar{x}_1) [\bar{n}(\bar{x}_2) - \delta_{\bar{x}_1, \bar{x}_2}] \cdots [\bar{n}(\bar{x}_k) - \delta_{\bar{x}_1, \bar{x}_k} - \dots - \delta_{\bar{x}_{k-1}, \bar{x}_k}] \rangle. \\ & \begin{bmatrix} a_{i,k} &= \epsilon(x_1) \cdots \epsilon(x_i) \bar{\epsilon}(\bar{x}_1) \cdots \bar{\epsilon}(\bar{x}_k) A_{i,k}. \end{bmatrix} \\ F_{i,k} &= \sum_{x_1, \dots, \bar{x}_i} \sum_{\bar{x}_1, \dots, \bar{x}_k} A_{i,k} (x_1, \dots, x_i; \bar{x}_1, \dots, \bar{x}_k), \\ f_{i,k} &= \sum_{x_1, \dots, \bar{x}_i} \sum_{\bar{x}_1, \dots, \bar{x}_k} a_{i,k} (x_1, \dots, x_i; \bar{x}_1, \dots, \bar{x}_k). \end{split}$$
 See talks of Adam and Volker

FIAS Frankfurt

Jochen Thaeder (LBNL)

Efficiency correction Local Factorial Moments

A. Bzdak and V. Koch, PRC91, 027901 (2015) X. Luo, PRC91, 034907 (2015)

- STAR use case:
 - 2 $p_{\rm T}$ bins for particle and anti-particle

$$F_{u,v,j,k}(N_{p_1}, N_{p_2}, N_{\bar{p}_1}, N_{\bar{p}_2}) = \frac{f_{u,v,j,k}(n_{p_1}, n_{p_2}, n_{\bar{p}_1}, n_{\bar{p}_2})}{(\varepsilon_{p_1})^u (\varepsilon_{p_2})^v (\varepsilon_{\bar{p}_1})^j (\varepsilon_{\bar{p}_2})^k}$$

Statistical Error Estimation Delta Theorem

$$error(c_n) \propto \frac{\sigma^n}{\epsilon^n} \quad error(\frac{c_n}{c_2}) \propto \frac{\sigma^{n-2}}{\epsilon^{n/2}}, \text{ for } n > 2$$
$$error(S\sigma) \propto \frac{\sigma}{\epsilon^n} \quad error(\kappa \sigma^2) \propto \frac{\sigma^2}{\epsilon^n}$$

$$\epsilon^{3/2}$$

$$error(\kappa\sigma^2) \propto \frac{\sigma^2}{\epsilon^2}$$

- Typical efficiencies
 - ϵ (proton) > ϵ (net-charged) > ϵ (kaon)
- Typical width
 - σ (net-charge) > σ (net-proton) > σ (net-kaon)
- With same N events
 - error(net-charge) > error(net-kaon) > error(net-proton)

FIAS Frankfurt

X. Luo, PRC91, 034907 (2015)

Other Contributions

- Initial volume fluctuations
 - Improve centrality resolution
 - apply centrality-bin-width correction
- Remove auto-correlation
 - Particles used in the analysis are excluded in centrality definition
 - STAR uses TPC to extract event centrality

Further Reading STAR, PRL 105, 022302 (2010) STAR, PRL112, 032302 (2014) X. Luo, J. Phys.: Conf. Ser. 316 012003 (2011) X. Luo, JPG 39, 025008 (2012) X. Luo, et al., JPG 40, 105104 (2013) X. Luo, PRC 91, 043907 (2015)

RHIC Beam Energy Scan Phase I (BES I) Search for the critical point

- Collide heavy-ions and vary beam (collision) energy to change Temperature & Baryon Chemical Potential
- Baryon stopping is the reason that we can achieve finite baryon chemical potential

- 2007: STAR Beam Energy Scan (BES) Focus Group formed
- 2008: Test run at √sNN = 9.2 GeV [PRC 81, 024911 (2010)]
- 2009: Proposal for BES Phase-I [STAR Note SN0493 & arXiv:1007.2613]
- 2010: BES-I data-taking began 39, 11.5 and 7.7 GeV
- 2011: Two further energies 27 and 19.6 GeV
- 2012: Test at 5 GeV
- 2014: Final BES-I energy (14.5 GeV) and BES-II proposal

Jochen Thaeder (LBNL)

RHIC Beam Energy Scan Phase I (BES I)

Search for the critical point

- Map phase transition boundary
- Search for possible QCD critical point
- Scanning 8 collision energies form 7.7 200 GeV in 2011, 2011, and 2014
 μ_ν, T : J. Cleymans et al., PRC 73, 034905 (2006)

			• • •		
√s _{NN} (GeV)	Statistics in 0-80% (M events)	Year	μ _в (MeV)	T (MeV)	
7.7	~3	2010	422	140	
11.5	~6.6	2010	316	152	
14.5	~12.5	2014	264	156	QM '15
19.6	~15	2011	206	160	
27	~32	2011	156	162	
39	~86	2010	112	164	
62.4	~45	2010	73	165	
200	~238	2010	24	166	

The STAR detector Full azimuthal coverage, $|\eta| < 1$

Time Projection Chamber Tracking, PID (dE/dx), vertexing multiplicity

Time-Of-Flight detector PID (time-of-flight)

Beam-Beam Counter

Min-bias trigger

Magnet

Analysis

- Events QA: event quality cuts have been applied, bad run/events removed
- Net-Proton
 - $0.4 < p_T < 2.0 \text{ (GeV/c)}$, |y| < 0.5
 - Primary track selection:
 - DCA_r < 1 cm, nHits_{TPC} >= 20, nHits_{TPC}/nHitsPoss>0.52, nHits_{dEdx} > 5
 - Centrality definition: primary particles, except protons in |y| < 0.5
- Net-Charge
 - $0.2 < p_T < 2.0 \text{ (GeV/c)}$, $|\eta| < 0.5$
 - Remove spallation protons for $p_T < 400 \text{ MeV/c}$
 - Primary track selection:
 - DCA_r < 1 cm, nHits_{TPC} >= 20, nHits_{TPC}/nHitsPoss>0.52, nHits_{dEdx} > 10
 - Centrality definition: primary particles in $0.5 < |\eta| < 1.0$
- Efficiency * acceptance corrections are done appropriately

Particle Identification Combined PID for Net-Proton (|y| < 0.5)

- TPC : 0.4 < $p_{\rm T}$ < 0.8 (GeV/c)
- TPC+TOF 0.8 < *p*_T < 2.0 (GeV/c)
 - New compared to published: PRL 112, 032302 (2014)
 - Doubles total multiplicity for (anti-)protons

Efficiencies (Tracking + PID) Combined PID for Net-Proton (|y| < 0.5)

- TPC : 0.4 < *p*_T < 0.8 (GeV/c)
 - ϵ_{TPC} changes as a function of p_{T} , **<** ϵ_{TPC} **> ~ 0.8**
 - Centrality dependence is relatively small
- TPC+TOF 0.8 < *p*_T < 2.0 (GeV/c)
 - Significantly smaller efficiencies !
 - TOF overall efficiency $<\epsilon_{TOF}> \sim 0.7$
 - Fairly constant vs p_{T}
 - $<\epsilon_{TPC+TOF}> = <\epsilon_{TPC}> * <\epsilon_{TOF}> ~ 0.5$
 - small centrality variation

Efficiencies (Tracking + PID) Combined PID for Net-Proton (|y| < 0.5)

Net-Proton / Protons / Anti-Protons

- Mean net-proton and (anti-)proton number increase with <N_{part}>
- Net-proton number is dominated by protons at low energies and increases when energy decreases
 - (Interplay between baryon stopping and pair production)

FIAS Frankfurt

Jochen Thaeder (LBNL)

Net-Proton Energy Dependence Cumulants

FIAS Frankfurt

Jochen Thaeder (LBNL)

Net-Proton Energy Dependence Cumulants Ratios – Centrality Dependence Study

- Error bars are statistical only. Systematic errors estimation underway.
- Dominant contributors:
 - efficiency corrections / PID

Net-Proton Energy Dependence Cumulants Ratios – Momentum Dependence Study

Kσ²: the energy dependence tends to be more pronounced with wider p_{T} acceptance, relative to published results

 $S\sigma$: the values are smaller for wider pT acceptance

FIAS Frankfurt

Jochen Thaeder (LBNL)

Net-Proton Energy Dependence Cumulants Ratios – Rapidity Dependence Study

Decreasing |y| brings cumulant ratios closer to Poisson Expectation

- Both in p_{τ} and y acceptance impact the values of moments.
- The acceptance needs to be large enough to capture the dynamical fluctuations.

The related systematic errors should be carefully addressed.

FIAS Frankfurt

Jochen Thaeder (LBNL)

Net-Charge Energy Dependence Phys. Rev. Lett. 113, 092301 (2014)

- σ²/M values increase monotonically with increasing beam energy.
- Sσ values increase with decreasing beam energy.
- The values of κσ² seem to be consistent with no beam energy dependence

NBD: Negative Binomial Distribution

Net-Charge Centrality Dependence Phys. Rev. Lett. 113, 092301 (2014)

FIAS Frankfurt

Jochen Thaeder (LBNL)

Plans Beam Energy Scan Phase II (2018-2019)

Fine energy scan at $\sqrt{s_{NN}} \le 20$ GeV

Electron cooling increased luminosity factor 3-10

STAR detector upgrades

Improved tracking Pseudo-rapidity coverage Centrality determination

Plans Beam Energy Scan Phase II

Improve pseudo-rapidity coverage and PID

iTPC upgrade: Replace aging wires Sparse pads \rightarrow cover full area, better dE/dx -1.7 < η < 1.7 p_{T} > 60 MeV/c

FIAS Frankfurt

EPD Upgrade Replaces aging BBC Greatly improved Event Plane Better trigger & b/g reduction $-4.5 < \eta < -1.8$, $1.8 < \eta < 4.5$ Other Hcal Endcap TOF

Jochen Thaeder (LBNL)

Summary and Outlook

- STAR has measured higher order moments of Net-Charge and Net-Proton distribution for BES energies $\sqrt{s_{NN}} = 7.7$, 11.5, 19.6, 27, 39, 62.4 and 200 GeV
- Results are corrected for tracking and PID efficiencies, as well as the centrality-bin-width, auto-correlation effects from the centrality definition have been taken care of
- New results from $\sqrt{s_{NN}} = 14.5$ GeV and Net-Kaons are in preparation, including study of rapidity dependence
- In the upcoming BES II, STAR will provide a larger rapidity and momentum coverage, improved PID and centrality estimation outside the central barrel

Stay tuned for Quark Matter

1 million

ochen Thaeder (LBNL)