STAR OVERVIEW RECENT RESULTS AND HIGHLIGHTS

Nicole Lewis for the Star Collaboration (BNL)
Initial Stages 2023
June 19th, 2023

Supported in part by:

Office of Science

Outline

- Flow Correlations
- Hard Probes
- Polarization in Heavy Ion Collisions
- Low-*x* Measurements

Flow Correlations

Ratio to d + Au for similar mean multiplicity

- Final-state effects are expected to largely cancel out
- · Sensitive to effects from initial spatial geometry and contributions from initial stage preequilibrium flow

STAR Collaboration, PRL **130**, 242301 (2023)

- ε_n with nucleon spatial fluctuations

See Talk by Shengli Huang

Wed, Parallel Session 6

- ε_n with nucleon + sub-nucleon spatial fluctuations
- Same v_3 measured in all systems, consistent with:
 - Sub-nucleon spatial geometry

or

Large initial stage pre-flow contribution

Imaging the Shape of Atomic Nuclei

• Random orientation increases the flow fluctuation and correlations with p_T for U + U compared to Au + Au

• Take ratio of correlations to constrain nuclear shape parameters

$$rac{\left\langle v_{2}^{2}\;\delta p_{T}
ight
angle _{\mathrm{UU}}}{\left\langle v_{2}^{2}\;\delta p_{T}
ight
angle _{\mathrm{AuAu}}}$$

 Compare with hydro and Glauber Models

• Constraints on quadrupole $\widehat{\mathcal{S}}_{-}$ deformation, $\beta_{2,U}$, and triaxiality, γ_U , consistent with low energy measurements

Measuring Nuclear Structure with Isobar

Collisions

See Poster by Haojie Xu

- Difference in number of neutrons affects the nucleus's size and density
- Use the multiplicity distribution to extract
 - Neutron skin thickness
 - Nuclear symmetry energy

Elliptic flow of strange and multi-strange hadrons in isobar collisions

See Poster by Priyanshi Sinha

Ratio between v_2 in Ru + Ru and Zr + Zr is systematically greater than 1

Caused by differences in the nuclear shape between the colliding nuclei

• $r_n(\eta)$: Measures how much v_n changes along the longitudinal direction

 Probing initial state dynamics in 3D and measuring the dynamical evolution of the QGP

- $r_2(\eta)$ shows clear centrality dependence
- $r_3(\eta)$ shows much weaker centrality dependence
- Larger longitudinal de-correlations at lower collision energies

Hard Probes

Jet Substructure in p + p

See Talk by David Stewart Wed, Parallel Session 5

Figure from Nihar Sahoo, HP2023

- Reconstruct jet, then groom to isolate non-perturbative part of shower
- Anti-correlation between collinear dropped jet mass $\Delta M/M$ and R_g
- Consistent with angular ordering of the parton shower

Energy-Energy Correlators (EEC) for Jets

- Studying how the energy is distributed as a function of spatial separation within the jet
- Probing hadronization scale and jet evolution
 - Transition region is $\Delta R \times p_T^{\rm jet} \sim 2-3~{\rm GeV}$ independent of jet p_T

Jet-Event Activity Correlations in p + Au

See Talk by David Stewart Wed, Parallel Session 5

- Anti-correlation between jet p_T at mid-rapidity and Event Activity (EA) at forward-rapidity
 - i.e. lowest- p_T jets have a broader EA distributions
 - Hard and soft scale physics are correlated over broad range of rapidities

Jet Mass Distribution in p + Au

- Shape of jet mass distribution does not change with event activity (EA)
- M distribution in high-EA p + Au also consistent with p + p

See Talk by David Stewart Wed, Parallel Session 5

• Null result for jet quenching in $p+\mathrm{Au}$

J/ψ Production with Jet Activity in p+p

See Talk by Barbara Trzeciak Tues, Parallel Session 4

• J/ψ cross section as a function of number of jets

- Constraining J/ψ production mechanism: color singlet vs color octet
- In the measured kinematics, PYTHIA8 predicts a larger fraction of J/ψ s are produced in association with jets than observed in data
- Theoretical model calculations needed

Suppression of Y States in Au + Au

See Talk by Barbara Trzeciak: Tues, Parallel Session 4

- A colored dipole
- Sensitive to the temperature of the QGP
- Significant suppression of Υ states compared to p+p
 - Increases with centrality
 - Sequential suppression pattern: higher excited states more suppressed due to their lower binding energies

STAR Collaboration, PRL 130, 112301 (2023)

See Talk by Barbara Trzeciak Tues, Parallel Session 4

Similar R_{AA} suppression of Υ states in isobar collisions as Au + Au

- Increases with centrality
- Hint of sequential suppression pattern

6/19/2023 Nicole Lewis, IS2023 16

Suppression of Y States in Isobar Collisions

STAR Collaboration, PRL **130**, 112301 (2023)

See Talk by Barbara Trzeciak Tues, Parallel Session 4

Similar R_{AA} suppression of Υ states in isobar collisions as Au + Au

- No significant dependence on collision species
- Suppression is driven by system size, $\langle N_{\rm part} \rangle$

J/ψ Supression

See Talk by Barbara Trzeciak Tues, Parallel Session 4

Also a colored dipole

- ullet Less massive than Υ
- Expected larger contribution from regeneration
- J/ψ R_{AA} suppression in isobar collisions is consistent with Au + Au at similar $\langle N_{\rm part} \rangle$
- Suppression is driven by system size $\langle N_{\rm part} \rangle$, not the collisions geometry

Polarization in Heavy Ion Collisions

Global Spin Alignment of ϕ and K^{*0}

• Measuring ho_{00} , the $00^{\rm th}$ component of the spin density matrix

• ρ_{00} deviating from 1/3 indicates spin alignment

Conventional causes of polarization:

- Large excess of ϕ ρ_{00} compared to $K^{*0}\rho_{00}$
 - Cannot be explained by conventional mechanisms
 - Consistent with polarization due to strong force field
 - Possible connection to effects from glasma fields

A. Kumar, B. Müller, and D.L. Yang, arXiv:2304.04181 (2023)

Nuclear Tomography Through

Entanglement

See Poster by Sam Corey and Daniel Brandenburg

- Quantum interference between one ion emitting the ρ versus the other
 - Analogous to a double-slit pattern
- No entanglement in p + Au
- Strong Modulation in A + A collisions
 - Difference in Au + Au vs U + U sinsitve to nuclear geometry
 - Used to extract nuclear mass radius

A + A collision

STAR Collaboration, Sci. Adv. 9, eabq3903 (2023)

Low-x Measurements

Baryon Stopping in γ + Au

 Clear signature of baryon stopping in inclusive photonuclear collisions

• Similar to eA except $Q^2 \rightarrow 0$

 Not consistent with the baryon number being carried by the valence quarks

d Au B M M arXiv:2205.05685 (2022)

Au

• Alternative model: baryon junction, a Y-shaped configuration of low-x gluons which carries the baryon number

D. Kharzeev, Physics Letters B **378**, 238 (1996)

VS

For more information see: N. Lewis, DIS 2023 C.Y. Tsang, APS GHP 2023

Charge Stopping vs Baryon Stopping Using **Isobar Collisions**

Charge stopping difficult to measure experimentally

- Measure net-charge yield difference instead: $\Delta Q = Q(Ru) Q(Zr)$
- Compare to net-baryon yield, B

If quarks carry baryon number:

$$\frac{B}{\Delta Q} \times \frac{\Delta Z}{A} \le 1$$

• Model calculations predict < 1

• Consistent with baryon junction prediction

For more information see:

C.Y. Tsang, APS GHP 2023

N. Lewis, DIS 2023

- Larger reaction cross section due to junctions carrying a much smaller momentum fraction: more baryon stopping arXiv:2205.05685 (2022)
- Shape consistent with effects from the neutron skin

$Di-\pi^0$ Correlations in p+p, p+Al, p+Au, d+Au

E.A. (ΣE_{BBC})
Clear suppression in pA at low p_T

• Increases with event activity (E. A.)

Probing nonlinear gluon dynamics at small-x

At forward rapidity, compare pp, pA, and dA to study Double Parton Scattering (DPS): two separate hard interactions in a single collision

- No suppression in overlapping RHIC kinematics in $d+{\rm Au}$
- Suppression only observed at very low $p_{\it T}$ at PHENIX

Summary & Take Home

- STAR is able to probe fundamental properties of initial-state nuclear physics using a wide range of collision species and energies
- Flow Correlations
 - Collectivity in $p+{\rm Au}$, $d+{\rm Au}$ and $^3{\rm He}+{\rm Au}\to{\rm consistent}$ with large contribution from sub-nucleon flow or pre-flow
 - Probe nuclear structure and geometry
 - Larger longitudinal de-correlations at lower collision energies
- Hard Probes
 - Constraining jets in p + p and p + A
 - Y sequential suppression and J/ψ suppression is driven by system size
- Polarization in heavy ion collisions
 Global Spin alignment of ϕ and K^{*0} consistent with a strong force field effect
- Low-x Measurments
 - Measurements sensitive to the carrier of the baryon number
 - Forward di-hadron correlations probe nonlinear gluon behavior

Future Data Taking with STAR

p + p, p + Au

Au + Au

2024

2025

Forward EMCal and HCal

STAR Forward Upgrade $2.5 < \eta < 4$

- Rapidity dependence of flow harmonics
- Longitudinal de-correlations
- Nonlinear gluon dynamics through dihadrons, γ -Jet, dijets
- R_{pA} for direct photons, Drell Yan, hadrons

STAR Posters

- Elliptic flow of strange and multi-strange hadrons in isobar collisions at RHIC,
 Priyanshi Sinha
- Longitudinal De-correlation of Anisotropic Flow at RHIC-STAR, Gaoguo Yan
- Measurement of Femtoscopic correlation function between D^0 mesons and charged hadrons in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Priyanka Roy Chowdhury
- Nuclear Tomography through Entanglement Enabled Spin Interference,
 Sam Corey
- Probing the neutron skin and nuclear symmetry energy with isobar collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ by STAR, Haojie Xu

STAR Talks

- Imaging the shape of atomic nuclei in highenergy collisions from STAR, Jiangyong Jia, Tuesday 2:20 PM
- Recent quarkonium results from the STAR experiment, Barbara Trzeciak, Tuesday 5:10
 PM
- Probing gluon saturation through two-particle correlations at STAR, Matt Posik, Tuesday
 6:10 PM
- Systematic study of flow harmonics via dihadron correlations at mid-rapidity in p+Au, d+Au and $^3{\rm He}+Au$ collisions at 200 GeV, Shengli Huang, Wednesday 2:20 PM
- Measurements of jet substructure in p+p and jet-event activity correlations in p+1 Au collisions at $\sqrt{s_{NN}}=200~{\rm GeV}$ at STAR, David Stewart, Wednesday 3:00 PM

Back Up

See Talk by David Stewart Wed, Parallel Session 5

- Jet p_T is correlated with event activity (E. A.) in a way that could indicate jet quenching
- But the dijet p_T balance does not change with event activity
 - Dijet acoplanarity also does not change with event activity

 $p_{T,lead} + p_{T,sub}$

Baryon Stopping vs Charge Stopping Using Isobar Data

- $^{96}_{44}$ Ru + $^{96}_{44}$ Ru and $^{96}_{40}$ Zr + $^{96}_{40}$ Zr at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Difference in net-charge yield:

$$\Delta Q = Q(\text{Ru}) - Q(\text{Zr}) = \left[(N_{\pi^+} - N_{\pi^-}) + (N_{K^+} - N_{K^-}) + (N_p - N_{\bar{p}}) \right]_{\text{Ru}} - \left[\right]_{\text{Zr}}$$

$$\approx N_{\pi} (R2_{\pi} - 1) + N_K (R2_K - 1) + N_p (R2_p - 1)$$

Double ratios:
$$R2_{\pi} = \frac{(N_{\pi^+}/N_{\pi^-})_{Ru}}{(N_{\pi^+}/N_{\pi^-})_{Zr}}$$

$$B = \left(N_p - N_{\bar{p}}\right) + \left(N_n - N_{\bar{n}}\right) \approx \left(N_p - N_{\bar{p}}\right) + \left(N_{\bar{p}}\sqrt{\frac{N_d}{N_{\bar{d}}}} - N_p\sqrt{\frac{N_{\bar{d}}}{N_d}}\right)$$

 Using inclusive particle yields, not removing contributions from weak decays

J. D. Brandenburg, N. Lewis, P. Tribedy, Z. Xu, arXiv:2205.05685 (2022)

Baryon Stopping vs Charge Stopping Using Isobar Data Derivation of the Charge Difference Formula

Double ratios:

$$R2_{\pi} = \frac{(N_{\pi^{+}}/N_{\pi^{-}})_{Ru}}{(N_{\pi^{+}}/N_{\pi^{-}})_{Zr}} \approx \frac{(1 + (N_{\pi^{+}} - N_{\pi^{-}})/N_{\pi})_{Ru}}{(1 + (N_{\pi^{+}} - N_{\pi^{-}})/N_{\pi})_{Zr}} = \frac{1 + \Delta R_{Ru}^{\pi}}{1 + \Delta R_{Zr}^{\pi}} \approx 1 + \Delta R_{Ru}^{\pi} - \Delta R_{Zr}^{\pi}$$

And similarly for $R2_K$ and $R2_p$, where $N_\pi = \frac{N_{\pi^+} + N_{\pi^-}}{2}$

For the net charge difference:

$$\Delta Q = Q(Ru) - Q(Zr) = \left[(N_{\pi^+} - N_{\pi^-}) + (N_{K^+} - N_{K^-}) + (N_p - N_{\bar{p}}) \right]_{Ru} - []_{Zr}$$

So

$$(N_{\pi^{+}} - N_{\pi^{-}})_{Ru} - (N_{\pi^{+}} - N_{\pi^{-}})_{Zr} = (N_{\pi} \times \Delta R_{Ru}^{\pi})_{Ru} - (N_{\pi} \times \Delta R_{Zr}^{\pi})_{Zr}$$
$$\approx N_{\pi} (\Delta R_{Ru}^{\pi} - \Delta R_{Zr}^{\pi}) \approx N_{\pi} (R2_{\pi} - 1)$$

And

$$\Delta Q = Q(Ru) - Q(Zr) \approx N_{\pi}(R2_{\pi} - 1) + N_{K}(R2_{K} - 1) + N_{p}(R2_{p} - 1)$$

J. D. Brandenburg, N. Lewis, P. Tribedy, Z. Xu, arXiv:2205.05685 (2022)

See Talk by Matt Posik Tues, Parallel Session 4

- Suppression increase with Event Activity (E.A.)
- No broadening of the correlation function observed

$Di-\pi^0$ Correlations in p+p, p+Al, p+Au, d+Au

See Talk by Matt Posik Tues, Parallel Session 4

d + Au has a × 5 higher pedestal compared to p + p and p + Au

- Could be explained through Double Parton Scattering (DPS): two separate hard interactions in a single collision
- π^0 PID has a much higher background in $d+{\rm Au}$ compared to p+p and $p+{\rm Au}$
- Di- π^0 measurements favor cleaner pA comparted to dA collisions