

IQUARK MATTER IDENTIFIED HADRON SPECTRA 2022

AND BARYON STOPPING IN y + Au

COLLISIONS AT STAR

Baryon Stopping

Energy needed to produce particles in heavyion collisions comes from kinetic energy lost by baryons in the colliding nuclei

- Larger effect in collisions with higher multiplicity (smaller impact parameter)
- Net-baryon yield can be estimated from the netproton yield: difference in number of protons and antiprotons

 See Ben Kimelman's Talk:
- Cannot be fully explained by pure string fragmentations

See Ben Kimelman's Talk:

QCD matter at finite
temperature and density I
Tuesday 6:10 pm

Baryon Junction

Nonperturbative configuration of gluons

linked to all three valence quarks

- Carries baryon number
- Theorized to be an effective mechanism of stopping baryons in pp and AA

D. Kharzeev, Physics Letters B 378, 238-246 (1996)
Nicole Lewis, QM 2022

Photonuclear Events

Can be used to study baryon stopping with

the cleanest possible process

• $q \bar{q}$ + Baryon Junction producing a midrapidity proton

• $q\overline{q}$ pair would not be able to stop baryons if the baryon number was carried by all three valence quarks

Most photonuclear events have low multiplicity, concentrated at equivalent Au + Au centrality of roughly 80%

Most photonuclear events have low multiplicity, concentrated Au + Au TPC (Activity)

BBCE, VPDE (Gap)

Au + Au Centrality of CACTIVITY)

CACTIVITY CACTIVITY

Using peripheral events as a baseline comparison, multiplicity consistent with 60 - 80% Au + Au

p_T Dependence of Particle Ratios in $\gamma A/AA$

Double ratio

 $K/\pi < 1$ and flat with p_T

 \rightarrow less access to strangeness in γA events

 \bar{p}/π and p/π steeper than K/π

 \rightarrow larger radial flow in 60 - 80% Au + Au

 $\overline{p}/\pi^- < p/\pi^+ \text{ for } p_T \lesssim 1 \text{ GeV}/c \stackrel{\frown}{\otimes} _{0.9}$

→ soft baryon stopping

Not corrected for efficiency, but largely canceled in the ratio

Nicole Lewis, QM 2022

Low p_T Baryon Enhancement in γA

Double ratio: $\bar{p}/p < 1$ at lower p_T

- Soft baryon stopping that is **stronger** in γA compared to peripheral AA
- Ratio is smaller at higher rapidity (A-going side)