

Determining Gluon Contribution to Proton Spin with STAR 2015 Endcap Electromagnetic Calorimeter Data

Zach Nielsen Valparaiso University For the STAR Collaboration Supported in part by

Office of Science

Background - Proton Spin

• Spin is the intrinsic angular Valence Quarks Sea Quarks momentum of a particle Quark pairs (quarks and Up and Down The proton has spin $\frac{1}{2}$ ħ antiquarks) Quarks are elementary particles which make up composite particles called hadrons (e.g. protons, neutrons, pions, etas) Gluon orbital Proton Gluon spin angular momentum (uud) \sim $\frac{1}{2}\hbar = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$ Quark spin Quark orbital ~30% angular momentum Gluons Mediates the strong nuclear force

Asymmetry (A_{LL})

- Using the number of the π^0 or η particles and the known polarization of the beams, we can calculate the asymmetry of π^0 and η particle production from different spin states of the protons
- The asymmetry formula:
 - Pb and Py are the polarization of the blue and yellow beams
 - N⁺⁺ and N⁺⁻ are the number of π^o or η particles in the respective spin state
 - R is the relative luminosity ratio
- If this calculation is nonzero, then there is a sensitivity to π° or η production from spin of the proton

Asymmetry is related to the gluon contribution to the spin of the proton

RHIC and **STAR**

Relativistic Heavy Ion Collider

Solenoidal Tracker At RHIC

APS April Meeting

RHIC and **STAR**

APS April Meeting

6 GeV photon

Particle Interacting With EEMC

Processing the Data

- Begin with minimally processed data
 - Information from detectors
 - Each run can include hundreds of these files
 - Around 760 Tb for 2015 data (√s = 200 GeV)

- Analysis code does many things
 - Calibrate the data
 - Identify photons
 - Calculate invariant mass of photon pairs
 - Determine possible π^0 or η candidates
- 1416 Runs processed for 2015 data (√s = 200 GeV)
 - ~3.3 billion events
 - ~3.0 Tb output

Data Quality Assurance (QA)

- To make sure we are using the best data available, we use quality assurance tests at the run and fill level
- For run level QA, we investigate:
 - Invariant mass
 - Number of towers hit
- For fill level QA, we investigate:
 - Invariant mass
 - Signal to background ratio

Run Level π⁰ Invariant Mass Histogram

Run: A period of time STAR is collecting data

Fill: Data collection window between beam injection and beam dump

π^0 Invariant Mass

Mean: 0.129 GeV/c² 15 Runs > 4 Standard Deviations from the Mean

Run Index

11

Number of Towers Hit

Mean: 3.03

Run Index

Summary

- Run level QA was performed on the 2015 200 GeV data set
- Next steps would involve fill level QA testing
 - Invariant Mass
 - Signal Fraction
 - Width of π^0 or η signal
- Calculation of A_{LL} value

