Femtoscopic analysis of charged kaon correlations at small relative momentum in *p*+*p* collisions in STAR

Grigory Nigmatkulov for the STAR Collaboration (GANigmatkulov@mephi.ru) National Research Nuclear University MEPhl (Moscow Engineering Physics Institute)

Motivation for K^{ch}K^{ch} HBT Measurements

• Two-particle correlations at low relative momentum provide information on the space-time geometry of emitting sources on the femtoscopic scale. Dynamical properties of the system are reflected in the total pair momentum dependence of the correlations

STAR

Charged Particle Identification

Time Projection Chamber • Charged particle tracking and momentum reconstruction

Time of Flight • Particle identification via $1/\beta$ • Timing resolution < 100 ps •Allows to separate charged kaons from other particle species in a wide momentum range up to 1.5 GeV/c

- Charged kaons have a smaller contamination than pions from resonance decays
- Study the dependence of the emission source on event multiplicity and higher pair transverse momentum region
- Study the evolution of the system with the incident energy

Simulation and Fitting Procedures

• A standard parametrization is obtained by assuming gaussian space-time distribution:

where N – normalization factor, λ – correlation strength, K(Q) – Coulomb function integrated over a spherical source of 1 fm and B(Q) – baseline function, that takes into account non-femtoscopic correlations, e.g. energy and momentum conservation induced correlations [1]

- 2π azimuthal coverage
- Pseudorapidity $-1.3 < \eta < 1.3$
- Particle identification via specific ionization energy loss dE/dx

• In order to take into account non-femtoscopic correlations Monte Carlo generator PYTHIA-6.4.27 [2] with Perugia 2010 Tune [3] was used

