

Recent results of elliptic flow and femtoscopy measurements from STAR

Grigory Nigmatkulov (for the STAR collaboration)

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Hadron Structure and QCD, Gatchina, Russia, June 27 – July 1, 2016

Outline

- Introduction
- Elliptic flow:
 - Energy and centrality dependence of identified particle elliptic flow
 - Particle vs antiparticle v_2
- Correlation femtoscopy:
 - Energy dependence of the femtoscopic radii
 - Measurement of interaction between antiprotons
- Summary

Heavy ion collision evolution

Observables

Elliptic flow (v₂):

- Initial spatial anisotropy is reflected in the momentum anisotropy
- Multi-strange hadrons and φ meson are less sensitive to late hadronic rescattering
- Sensitive to the early stages
 Probe of the early (partonic) stage of the collision

Correlation femtoscopy:

- Using quantum-statistical correlations of particles to extract spatial and temporal characteristics of the emitting source
- Sensitive to the final state interactions

Probe of the late (hadronic) stage of the collision

STAR detectors

Elliptic flow

- Elliptic flow: Initial spatial anisotropy → final momentum anisotropy
 - Characterized by v_2 coefficient of Fourier expansion of azimuthal particle distribution with respect to the reaction plane
- Probe of early collision dynamics
 - Degrees of freedom (partonic/hadronic), Equation of State, degrees of thermalization, ...

Particle selection

- Clear signal for multi-strange hadrons and ϕ meson
- ϕ mesons: invariant mass
- Weak decay particles: topological cuts + invariant mass

Partonic collectivity

STAR: Phys. Rev. Lett. 116 (2016) 062301

- Mass ordering at p_T<2 GeV/c
- Baryon/meson splitting at $2 < p_T < 5$ GeV/c
- New! Ω follows the baryon/meson splitting

v₂: particle vs antiparticle

STAR: Phys. Rev. C 93 (2016) 014907 STAR: Phys. Rev. Lett. 110 (2013) 142301

- The Au+Au collisions recorded at √s_{NN}=14.5 GeV in 2014 are consistent with the data from BES taken in 2010-11
- Big difference of baryon and antibaryon v₂ is observed for low energies

• Clear centrality dependence of $p-\bar{p} v_2$ after the normalization. Difference is bigger for the more central collisions

Correlation femtoscopy

Kolb & Heinz: 2003, nucl-th/0305084

- Evolution of the initial shape depends on:
 - Pressure anisotropy
 - Lifetime
- Using the momentum correlations to measure spatial and temporal parameters of the emitting source
- Sensitive to the final state interactions
- Sensitive to the phase transition

Correlation femtoscopy

- Systematic measurement of the femtoscopic radii
- \geq The decrease in transverse and longitudinal radii at higher m_{τ} are attributed to transverse and longitudinal flow
- Different beam energies show similar trends for R_{out} and R_{side} in magnitude and slope
- R_{long} increases with energy for all centralities

CERES * STAR

1.5

Λ

 $\sqrt{s_{NN}}$ [GeV]

Particle emission duration

STAR: Phys. Rev. C 92 (2015) 014904

3D+1 Hydrodynamics Rischke & Gyulassy: NPA 608 (1996) 479

Initial energy density ϵ_0

- R_{out}/R_{side} is sensitive to the emission duration
- Predicted to exhibit a peak when energy density of the system is close to the threshold of the phase transition
- > Intriguing non-monotonic behavior at around $\sqrt{s_{NN}}$ ≈20 GeV for all m_T ranges.

p and \bar{p} femtoscopy

STAR f₀ and d₀ for antiproton-antiproton

STAR: Nature 527 (2015) 345

- Within the uncertainties, the f₀ and d₀ parameters for the antiprotonantiproton interaction are consistent with the parameters for the protonproton interaction
- First measurement of the simplest system of anti-nucleons (nuclei)

Summary

Elliptic flow

- The p_T dependence of ϕ and Ωv_2 is similar to π and p
 - Large amount of collectivity is developed in the initial partonic phase
- The v₂ of baryons is larger than for antibaryons for all collision energies <62 GeV
- Centrality dependence of relative $p-\bar{p} v_2$ difference

Correlation femtoscopy

- The particle emitting source radii are extracted from two-pion femtoscopic measurement
 - Similar m_T dependencies for all collision energies and centralities
 - Intriguing behavior of the $\rm R_{out}/R_{side}$ at around $\rm \sqrt{s_{NN}} \approx 20~GeV$
- First measurement of the antiproton-antiproton strong interaction