

Two-pion and two-kaon femtoscopic correlations in Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV from STAR

Grigory Nigmatkulov for the STAR collaboration National Research Nuclear University MEPhI

The 3rd international conference on particle physics and astrophysics

- Measurement of space-time parameters of the particle emitting source at kinetic freeze-out
- Different particle species are sensitive to various effects (Final State Interactions (FSI), transport properties, asymmetries, etc...)
- Extending transverse mass region (up to 1 GeV/c²) using particle identification from the Time-Of-Flight detector
- Kaon femtoscopy: provides complementary information because they are less affected by resonance decays, contain strange quark, heavier than pions

STAR ☆ Correlation function

Two-particle correlation function:

CF(p₁, p₂)=
$$\int d^3r \ S(r, k) \ |\Psi_{1,2}(r, k)|^2$$

r=x₁-x₂ and q=q_{inv}= p₁ - p₂

Experimentally:

$$CF(q) = A(q)/B(q)$$

- A(q) contain quantum statistical (QS)
 correlations and final state interactions (FSI)
- B(q) obtained via mixing technique (does not contain QS and FSI)

G. Bertsch. Phys. Rev. C 37 (1988) 1896 6/14/2017

The relative pair momentum can be projected onto the Bertsch-Pratt, out-side-long system:

 q_{long} – along the beam direction q_{out} – along the transverse momentum of the pair q_{side} – perpendicular to longitudinal and outward directions

Correlation functions are constructed in Longitudinally Co-Moving System (LCMS), where $p_{1z}+p_{2z}=0$

STAR ☆ Fitting procedure

• Femtoscopic radii are extracted by fitting $C(\mathbf{q})$ with (Bowler-Sinyukov procedure):

$$C_2(q_{out}, q_{side}, q_{long}) = N(1 - \lambda + \lambda K(q_{inv}) \left(1 + \exp\left(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2\right)\right)\right)$$

M. Bowler. Phys. Lett. B 270 (1991) 69

N – normalization factor λ – correlation strength Yu. Sinyukov et al. Phys. Lett. B 432 (1998) 248

 $K(q_{inv})$ – Coulomb correction

R_{side} ~geometrical size of the system

 $R_{out} \sim geometrical size + particle emission duration$

 $R_{long} \sim medium \ lifetime$

• Fit using Log-likelihood method:

E-802. Phys. Rev. C 66 (2002) 054906

• Fit example \rightarrow

Out, side and long projections of 3D $\pi\pi$ and KK correlation functions

Fit shows a good description of the data

STAR ☆ Like-sign kaon femtoscopy

- Positively and negatively charged kaon emitting source radii are consistent within uncertainties
- Systematic uncertainties are obtained by varying the fit range, Coulomb source radii and PID cuts
- Extracted source radii decrease with increasing pair transverse momentum and increase with increasing collision centrality
- The more central collisions correspond to the larger size of the emitting region

STAR 🖈 Source radii: pions vs. kaons

$$m_{\rm T} = \sqrt{k_{\rm T}^2 + m^2}$$

- Extending transverse mass region (up to 1 GeV/c²) using particle identification from the Time-of-Flight detector
- Pion results are consistent with the previous analysis (1)
- R_{side} trend for kaons is similar to that of pions
- R_{out} and R_{long} of pion and kaon source radii follow different m_T dependences
- Kaons freeze-out later the pions (3)

- (1) STAR, Phys. Rev. C 92 (2015) 014904
- (2) This analysis: STAR Preliminary
- (3) STAR, Phys. Rev. Lett. 91 (2003) 262302

- Charged kaon and pion emitting source radii $R_{\text{out}},\,R_{\text{side}}$ and R_{long} are extracted
- Using the TOF detector pion source radii measurements were extended to the higher transverse mass region (up to 1 GeV/c²)
- Positively and negatively charged kaon radii are consistent within the uncertainties
 - The more central collisions correspond to the larger size of the emitting region
- Comparison of KK and $\pi\pi$ source radii:
 - Kaons freeze-out later than pions
 - Most prominent difference between pions and kaons is in R_{out}