

Overview of the STAR experiment

Niseem Magdy Abdelrahman Stony Brook University niseemm@gmail.com

CIPANP-2022

Outline

- I. Isobar collisions and magnetic field effect
 - a) Isobaric collision results
- II. New insights into the collective effects
 - a) Beam-energy scan
 - b) Different collision systems
- III. New insights into the nuclear shape and structure
 - a) Deformation of the U nuclei
 - b) Deformation study using the isobaric collisions

Chiral Magnetic Effect (CME)

D.E. Kharzeev et al. Prog.Part.Nucl.Phys. 88 (2016) 1-28

Prog.Part.Nucl.Phys. 75 (2014) 133-151

In non-central collisions, a strong magnetic field is created \perp to Ψ_{RP}

Chiral Magnetic

The magnetic field acts on the chiral fermions with $\mu_5 \neq 0$ leading to an electric current along the magnetic field which results in a charge separation

CME-driven charge separation leads to a dipole term in the azimuthal distribution of the produced charged hadrons:

$$\frac{dN^{ch}}{d\phi} \propto 1 \pm 2 \, a_1^{ch} \sin(\phi) + \cdots \qquad a_1^{ch} \propto \mu_5 \, \vec{B}$$

Can we identify & characterize this dipole moment?

The CME correlators have been used extensively for experimental measurements.

> Correlators to measure dipole charge separation

S. Voloshin, PRC 70 057901 (2004)

A well-known approach is to use the γ correlator to measure the dipole charge separation N. Magdy, et al, PRC 97 6, 061901 (2018)

The $R_{\Psi m}(\Delta S)$ correlation function method is used to measure the dipole charge separation

A. Tang, Chinese Phys. C 44 054101 (2020)

The signed balance function method is recently used to measure the dipole charge separation

- > The correlators' responses are similar for signal and background
- ➤ Background can account for a part, or all of the observed charge separation signal?

> Separating the signal from background is the main subject of the isobar collisions

- N. Magdy, et al. PRC 98 (2018) 6, 061902
- A. Tang, CPC 44 054101 (2020)
- H-J. Xu, et al, CPC 42, 084103 (2018)
- S. Voloshin, PRC 98, 054911 (2018)
- J. Zhao, et al, EPJC 79 (2019) 168

➤ Isobar Analysis: A large, collective effort

Case for CME:

- $\begin{array}{ll} \blacktriangleright & \Delta \gamma \text{ and its derivatives} \\ & \Delta \gamma / v_2 (Ru/Zr) > 1 \\ & \Delta \gamma_{112} / v_2 (Ru/Zr) > \Delta \gamma_{123} / v_3 (Ru/Zr) \\ & \kappa (Ru/Zr) > 1 \end{array}$
- $f_{CME}^{Ru} > f_{CME}^{Zr} > 0$

BNL, CCNU, Fudan, Huzhou, Purdue, SINAP, Stony Brook, Tsukuba, UCLA, UIC, and Wayne State

STAR ☆

➤ Isobar Analysis: Expected CME background in isobar

STAR Collaboration PRC 105, 014901 (2022)

- \triangleright Observed differences in multiplicity and v_2 for the same centrality
 - ✓ Background differences between the two isobars are more complicated than previously thought
 - ✓ The predefined CME signature could be invalid

STAR ☆

> Isobar Analysis: Results

STAR Collaboration PRC 105, 014901 (2022)

Predefined CME signature:

- \checkmark Δγ and its derivatives $\Delta \gamma / v_2(Ru/Zr) > 1$ $\Delta \gamma_{112} / v_2(Ru/Zr) > \Delta \gamma_{123} / v_3(Ru/Zr)$ $\kappa(Ru/Zr) > 1$
- $\checkmark \quad \sigma_{R\psi_2}^{-1}\left(\frac{Ru}{Zr}\right) > 1$

The predefined CME signature is not observed

- ✓ Not an indication for the absence of the CME in the individual signal
 - Ongoing work to characterize the effects of backgrounds

- \triangleright Higher order flow harmonics are sensitive probes for $\frac{\eta}{s}(T)$ due to their enhanced viscous response
 - Beam energy dependence for a given collision system:

- ✓ Initial-state spatial anisotropy is approximately beam energy independent.
- ✓ Viscous attenuation ($\propto \frac{\eta}{s}(T)$) is beam energy dependent.

- Collision system dependence at a given beam energy:

What are the respective roles of ϵ_n and its fluctuations and correlations, flow correlations and $\frac{\eta}{s}(T)$ as a function of beam energy?

➤ Beam energy dependence for a given collision system:

- > The flow harmonics depend on beam energy.
 - ✓ Sensitive to the viscous effects $(N_{ch}, \langle p_T \rangle, \frac{\eta}{s}, ...)$

- The dimensionless parameters show similar values and trends for different beam energies.
 - \checkmark Sensitive to the ϵ_n and its fluctuations and correlations

- ➤ Beam energy dependence for a given collision system:
- $Var(v_2^2)_{dyn}$ decreases with beam-energy
- C_k decreases with beam-energy
- $cov(v_2^2, [p_T])$ decreases with beam-energy
 - ✓ Sensitive to the viscous effects $(N_{ch}, \langle p_T \rangle, \frac{\eta}{s}, ...)$

- The Pearson correlation, $\rho(v_2^2, [p_T])$, shows no significant energy dependence within the systematic uncertainties
 - ✓ Sensitive to the ϵ_n and its fluctuations and correlations

➤ Beam energy dependence for a given collision system:

 $\triangleright v_3^2$, $[p_T]$ correlations

- $Var(v_3^2)_{dyn}$ decreases with beam-energy
- C_k decreases with beam-energy
- $cov(v_3^2, [p_T])$ decreases with beam-energy
 - ✓ Sensitive to the viscous effects $(N_{ch}, \langle p_T \rangle, \frac{\eta}{s}, ...)$

- The Pearson correlation, $\rho(v_3^2, [p_T])$, shows no significant energy dependence within the systematic uncertainties
 - ✓ Sensitive to the ϵ_n and its fluctuations and correlations

> Collision system dependence at a given beam energy:

$$\ln(v_n/\varepsilon_n) \propto -(\eta/s)\langle N_{Ch}\rangle^{-1/3}$$

 v_2 and $\ln\left(\frac{v_2}{\varepsilon_2}\right)$ vs. $\langle N_{Ch}\rangle^{-1/3}$ for different collision systems

 $\geq \frac{v_2}{\varepsilon_2}$ for all systems scales to a single curve.

➤ At similar N_{ch} different systems show similar values and trends

➤ Collision system dependence at a given beam energy:

- > The flow harmonics depend on beam energy.
 - ✓ Sensitive to the viscous effects $(N_{ch}, \langle p_T \rangle, \frac{\eta}{s}, ...)$

- The dimensionless parameters show similar values and trends for different beam energies.
 - \checkmark Sensitive to the ϵ_n and its fluctuations and correlations

Emergence of new magic numbers?

'bubble" nuclei

deformation

- The rich structure of atomic nuclei
- Collective phenomena can reflect:
 - ✓ Clustering, halo, skin, bubble...
 - ✓ Quadrupole/octupole/hexdecopole deformations
 - ✓ Nontrivial evaluation with N and Z.

High energy:

Linear response in each event?

$$N_{ch} \propto N_{part}$$

$$N_{ch} \propto N_{part} \quad rac{\delta[p_T]}{[p_T]} \propto -rac{\delta R_\perp}{R_\perp} \quad V_n \propto {\cal E}_n \quad _{
m n=2,3}$$

$$V_n \propto \mathcal{E}_n$$
 $_{
m n=2}$

Emergence of new

> Probing nuclear deformation in heavy-ion collisions

$$\rho(v_n^2, [p_{\mathrm{T}}]) = \frac{\mathrm{cov}(v_n^2, [p_{\mathrm{T}}])}{\sqrt{\mathrm{Var}((v_n^2)_{dyn} \langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle}}$$

Sign change of $\rho(v_2, [p_T])$ confirms that U is prolate and $\beta_{2,U} = 0.28 \pm 0.03$ (IPGlasma + Hydro)

> Probing nuclear deformation in heavy-ion collisions

- Mapping on same $N_{trk}^{offline}$ instead of centrality
- The ratios show non-monotonic trends
- The ratios well constrain the nuclear structure parameters

$$eta_{2,\mathrm{Ru}} = 0.16 \pm 0.02$$
 $eta_{3,\mathrm{Zr}} = 0.20 \pm 0.02$ Estimate based on AMPT

C. Zhang, J. Jia, PRL128, 022301 (2022)
J.Jia and C. Zhang, arXiv:2111.15559
B. Pritychenko, et.al. At.Data Nucl.Data Tables 107, 1 (2016)
T. Kebedi, et.al. At.Data Nucl.Data Tables 80, 35 (2002)

300

N_{trk} (lηI<0.5)

Species	eta_2	eta_3	$a_0~({ m fm})$	$R_0 ext{ (fm)}$
Ru	0.162	0	0.46	5.09
Zr	0.06	0.20	0.52	5.02

> Probing neutron skin thickness and symmetry energy in isobar collisions

The multiplicity and $\langle p_T \rangle$ differences can probe neutron skin and symmetry energy

> Probing neutron skin thickness and symmetry energy in isobar collisions

H. Li, HJX, et.al, PRL125, 222301 (2020) HJX, et.al arXiv:2111.14812

The multiplicity and $\langle p_T \rangle$ differences can probe neutron skin and symmetry energy