

In part supported by

Beam-energy dependence of transverse momentum and flow correlations in STAR

Fall Meeting of the Division of Nuclear Physics of the American Physical Society Oct. 27 – 30, 2022 Hyatt Regency Hotel, New Orleans, LA physics

Niseem Magdy Abdelrahman Stony Brook University <u>niseemm@gmail.com</u> Motivation:

The beam-energy dependence of flow and p_T correlations will reflect the respective roles of ϵ_n , its fluctuations and $\frac{\eta}{s}$ as a function of T and μ_B

Beam energy dependence for a given collision system:

Niseem Magdy, Roy Lacey PLB 821 136625 (2021)

Piotr Bozek PRC 93, 044908 (2016)

> Viscous attenuation ($\propto \frac{\eta}{s}(T)$) is beam energy dependent

 \succ Initial-state ε_2 is approximately energy independent

The Pearson correlation, $v_n - [p_T]$ correlation, coefficient (PCC) is expected to be susceptible to the initial conditions of heavy-ion collisions.

Niseem Magdy DNP-2022

Analysis procedure: Transverse momentum-flow correlations:

$$Var(v_n^2)_{dyn} = v_n^4\{2\} - v_n^4\{4\} \qquad C_k = \left(\frac{\sum_b \sum_{b'} w_b w_{b'} (p_{T,b} - \langle [p_T] \rangle) (p_{T,b'} - \langle [p_T] \rangle)}{((\sum_b w_b)^2 - \sum_b (w_b)^2)}\right)$$

$$cov(v_n^2, [p_T]) = Re\left(\left|\frac{\sum_{a,c} w_a w_c e^{in(\phi_a - \phi_c)} ([p_T] - \langle [p_T] \rangle)_b}{\sum_{a,c} w_a w_c}\right|\right)$$

$$\rho(v_n^2, [p_T]) = \frac{cov(v_n^2, [p_T])}{\sqrt{Var(v_n^2)_{dyn} C_{\{k\}}}}$$

The Pearson correlation coefficient (PCC) measures the strength of the v_n - $[p_T]$ correlation.

Niseem Magdy DNP-2022

 $|\Delta \eta| > 0.7$ a
b
c η

 $\Lambda n > 0.2$

J. Jia, M. Zhou, A. Trzupek, PRC 96 034906 (2017)

ATLAS Collaboration, Eur. Phys. J. C 79, 985 (2019)

Piotr Bozek PRC 93, 044908 (2016)

Niseem Magdy, Roy Lacey PLB 821 136625 (2021)

Niseem Magdy, et al. PRC 105 (2022) 4,044901 Transverse momentum-flow correlations:

The beam-energy dependance of the transverse momentum-flow correlations using hydro model with URQMD initial state

- $\gg \sqrt{C_k} / \langle p_T \rangle$ shows no change with beam energy
- $\succ cov(v_2^2, [p_T])$ decreases with beam-energy
- ≻ The Pearson correlation, $\rho(v_2^2, [p_T])$ shows no change with beam energy

Transverse momentum-flow correlations:

The beam-energy dependance of the transverse momentum-flow correlations using hydro model with URQMD initial state

Transverse momentum-flow correlations:

➤ Data set:

\checkmark Au +Au BES $\sqrt{s_{NN}} = 19.6 - 200 \text{ GeV}$

The STAR experiment at RHIC

- Time Projection Chamber
 Tracking of charged particles with:
 ✓ Full azimuthal coverage
 - ✓ $|\eta| < 1$ coverage
- > In this analyses we used tracks with: $0.2 < p_T < 2.0 \text{ GeV/c}$

≻ Hydro models:

	Hydro-A	Hydro-B	
η/s	0.12	0.05	PRC
Initial conditions	IP-Glasma	TRENTO	≻ (B) I
Contributions	Hydro + Hadronic cascade	Hydro + Direct decay	PRC

- (A) B.Schenke, C.Shen, and P.Tribedy PRC 99, 044908 (2019)
- (B) P. Alba, et al.
 PRC 98, 034909 (2018)

Hydro comparisons

- ► $Var(v_2^2)_{dyn}$ shows a good agreement with Hydro-A
- $\succ C_k$ shows a good agreement with Hydro-A from central to mid central

> Hydro-A overestimate $cov(v_2^2, [p_T])$

→ Hydro models can qualitatively describe the data ✓ Both Hydro-A and -B overestimate $\rho(v_2^2, [p_T])$ AR 🛣

Hydro comparisons

- $► Var(v_3^2)_{dyn}$ shows a good agreement with Hydro-A
- $> C_k$ shows a good agreement with Hydro-A from central to mid central
- > Hydro-A within the uncertainty shows a good agreement with $cov(v_3^2, [p_T])$

➢ Hydro models can qualitatively describe the data
 ✓ Both Hydro-A and -B overestimate ρ(v₃², [p_T]) in more central collisions

Niseem Magdy DNP-2022

AR 🛣

- The beam-energy dependence of the transverse momentum-flow correlations
 - $> Var(v_2^2)_{dyn}$ decreases with beam-energy
 - $\succ C_k$ decreases with beam-energy
 - $\succ cov(v_2^2, [p_T])$ decreases with beam-energy
- \succ The Pearson correlation, $\rho(v_2^2, [p_T])$, shows no significant energy dependence within the systematic uncertainties

- The beam-energy dependance of the transverse momentum-flow correlations
 ×1
 - ► $Var(v_3^2)_{dyn}$ decreases with beam-energy
 - $> C_k$ decreases with beam-energy
 - $\succ cov(v_3^2, [p_T])$ decreases with beam-energy
- ≻ The Pearson correlation, $\rho(v_3^2, [p_T])$, shows no significant energy dependence within the systematic uncertainties

We studied the transverse momentum-flow correlations as a function of centrality for different beam energies

Transverse momentum-flow correlations:
 The cov(v_n², [p_T]) increases with beam energy
 The normalized ρ(v_n², [p_T]):
 Show little, if any, change with beam energy

The $\rho(v_n^2, [p_T])$ measurements show little, if any, change with beam energy, suggesting that $\rho(v_n^2, [p_T])$ is dominated by initial state effects.

