

Beam energy and system dependence of rapidity-even dipolar flow

Niseem Magdy STAR Collaboration Stony Brook University

niseem.abdelrahman@stonybrook.edu

 \triangleright

Directed flow $v_1(\eta) = v_1^{\text{even}}(\eta) + v_1^{\text{odd}}(\eta)$

The rapidity-even directed flow v_1^{even} stems from initial-state fluctuations acting in concert with hydrodynamic-like expansion

The rapidity-odd directed flow v₁^{odd} develops along the direction of the impact parameter and is an odd function of pseudorapidity.

The magnitude of v_1^{even} is sensitive to:

- ✓ Initial-state eccentricity & its fluctuations
- Transport coefficients (η/s , etc) but with less sensitivity than for higher order harmonics.
- The v₁^{even} constitutes a new set of experimental constraints that can help to:
 - Differentiate between initial-state models
 - Pin down the temperature dependence of the transport coefficients.

Datasets

Collected data for Au+Au at different $\sqrt{s_{NN}}$

Collected data for different systems at $\sqrt{s_{NN}} \approx 200$ GeV;

Au + Au

Cu + Au

d + Au

STAR Detector at RHIC

> TPC detector covers $|\eta| < 1$

Long – range

Long range non-flow suppression

$$v_{11} = v_1^a v_1^b + \delta_{long} \quad n = 1$$

arXiv¹²⁰³ 0931 arXiv:1203.3410 arXiv:1208.1874 arXiv:1208.1887 arXiv:1211.7162

Long – range

Momentum Conservation Long range non-flow suppression

 $\mathbf{v_{11}}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - C p_T^a p_T^t$

 $|\eta| < 1$ and $|\Delta \eta| > 0.7$

The extracted $v_1^{even}(p_T)$ at 200 GeV and 0%-10% centrality

The characteristic behavior of $v_1^{even}(p_T)$ agrees with hydrodynamic expectations.

 $> v_1^{even}(p_T)$ agrees with hydrodynamic calculations at 200 GeV

 $|\eta| < 1$ and $|\Delta \eta| > 0.7$ Beam energy dependence of v_1^{even} $\mathbf{v_{11}}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - C p_T^a p_T^t$ The extracted v_1^{even} vs $\sqrt{s_{NN}}$ at 0%-10% centrality - STAR Preliminary Au+Au 0.02 ε 0%-10% 20-30% 10-20% 0.6 $0.4 < p_T < 0.7 (GeV/c)$ 5-10%)-5% 0.01 ⁸2 v_n 0.4 Ψ ⁸з ()0.2 Ф Ф Ш m Í -0.01 Í 0<u>`</u>0 50 100 150 200 N_{part} -0.02 10 100

P.Bożek PLB 717 287-290 (2012)

 $\geq |v_1^{even}|$ shows similar values to v_3 at $0.4 < p_T < 0.7 (GeV/c)$

 $\geq \varepsilon_3 > \varepsilon_1$

√s_{NN}(GeV)

 \checkmark v_3 has larger viscous effect than v_1^{even}

Rapidity-even dipolar flow

v_1^{even} for different systems

 $ln\left(\frac{\nu_n}{\varepsilon_n}\right) \propto -A \left(\frac{\eta}{s}\right) \langle N_{Ch} \rangle^{-1/3}$

 $|\eta| < 1$ and $|\Delta \eta| > 0.7$

 v_1^{even} vs p_T at different $\langle N_{Ch} \rangle$ for all systems

The efficiency corrections for N_{Ch} have applied for Au+Au and U+U collisions.
Within the experimental uncertainties v₁^{even} shows similar trends and magnitudes for all systems.

 $\succ v_1^{even}$ is system independent.

The efficiency corrections for N_{Ch} have applied for Au+Au and U+U collisions.
Within the experimental uncertainties v₁^{even} shows similar trends and magnitudes for all systems.

 $\succ v_1^{even}$ is system independent.

Odd harmonics are system independent.

 $|\eta| < 1$ and $|\Delta \eta| > 0.7$

 \succ Even harmonics are system dependent with less dependence for higher harmonics.

Conclusion

Comprehensive set of STAR measurements presented for $v_1^{even}(p_T, \text{Cent}\% \text{ and } \sqrt{s_{NN}})$ for several collision systems.

For Au + Au beam energy scan

✓ v₁^{even} shows a weak dependence on centrality and beam energy
✓ Within the experimental uncertainties |v₁^{even}|(√s_{NN}) shows a similar magnitude to v₃ suggesting that v₃ has larger viscous effect than v₁^{even}

For different systems at similar multiplicity (200 GeV)
Within the experimental uncertainties v₁^{even} shows similar trends and magnitudes for all systems
v₁^{even} is system independent.

Within the experimental uncertainties, the similar trends and magnitudes of the measured v_1^{even} for different colliding systems at $\sqrt{s_{NN}} \sim 200 \ GeV$ suggest a comparable viscous coefficient $\left(A\frac{\eta}{s}\right)$

