

In part supported by

Beam-energy dependence of transverse momentum and flow correlations in STAR

Niseem Magdy Abdelrahman University of Illinois at Chicago <u>niseemm@gmail.com</u>

Workshop on Particle Correlation and Femtoscopy

Motivation:

> The beam-energy dependence of flow and p_T correlations will reflect the respective roles of ϵ_n , its fluctuations and $\frac{\eta}{s}$ as a function of T and μ_B

Beam energy dependence for a given collision system:

Niseem Magdy WPCF-2022

Analysis procedure:

(iii) Set-C: with centrality defined using the impact parameter distribution.

Excluding the POI from the collision centrality definition, serves to reduce the possible self-correlation $|A_{u}| > 0.7$ Niseem Magdy WPCF-2022

Investigations of the $p_T - p_T$ correlations from STAR

➤ The azimuthal correlations for Au+Au at 200 GeV

STAR 🖈

Investigations of the $p_T - p_T$ correlations from STAR ➤ The longitudinal correlations for Au+Au at 200 GeV

0-20 %

20-40 %

40-60 %

60-80 %

80-100 %

 $q_2 = Total$

 $q_2 = 10 \%$

1000

6

 $q_2 = 90 \%$

Analysis procedure:

Transverse momentum-flow correlations:

$$Var(v_n^2)_{dyn} = v_n^4 \{2\} - v_n^4 \{4\}$$

$$C_{k} = \left(\frac{\sum_{b} \sum_{b'} w_{b} w_{b'} \left(p_{T,b} - \langle [p_{T}] \rangle \right) \left(p_{T,b'} - \langle [p_{T}] \rangle \right)}{\left((\sum_{b} w_{b})^{2} - \sum_{b} (w_{b})^{2} \right)} \right) \Delta \eta_{b\dot{b}} > 0.2$$

$$cov(v_n^2, [p_T]) = Re\left(\left|\frac{\sum_{a,c} w_a w_c e^{in(\phi_a - \phi_c)} ([p_T] - \langle [p_T] \rangle)_b}{\sum_{a,c} w_a w_c}\right|\right)$$

$$\rho(v_n^2, [p_T]) = \frac{cov(v_n^2, [p_T])}{\sqrt{Var(v_n^2)_{dyn} C_{\{k\}}}}$$

The Pearson correlation coefficient (PCC) measures the strength of the v_n , $[p_T]$ correlation.

Niseem Magdy WPCF-2022

J. Jia, M. Zhou, A. Trzupek, PRC 96 034906 (2017)

ATLAS Collaboration, Eur. Phys. J. C 79, 985 (2019)

Piotr Bozek PRC 93, 044908 (2016)

Niseem Magdy, Roy Lacey PLB 821 136625 (2021)

Niseem Magdy, et al. PRC 105 (2022) 4, 044901 Transverse momentum-flow correlations:

The beam-energy dependance of the transverse momentum-flow correlations

Niseem Magdy WPCF-2022

 $\triangleright Var(v_2^2)_{dyn}$ decreases with beam-energy

 $\sim \sqrt{C_k}/\langle p_T \rangle$ shows no change with beam energy

 $\succ cov(v_2^2, [p_T])$ decreases with beam-energy

> The Pearson correlation, $\rho(v_2^2, [p_T])$ shows no change with beam energy

8

Transverse momentum-flow correlations:

STAR

The beam-energy dependance of the transverse momentum-flow correlations

 $> Var(v_2^2)_{dyn}$ decreases with increasing η/s

 $\sim \sqrt{C_k} / \langle p_T \rangle$ shows no change with η / s

 $\succ cov(v_2^2, [p_T])$ decreases with increasing η/s

> The Pearson correlation, $\rho(v_2^2, [p_T])$ shows little change with η/s

Niseem Magdy WPCF-2022

✤ Hydro comparisons

(B) P. Alba, et al.
 PRC 98, 034909 (2018)

	Hydro-A	Hydro-B
η/s	0.12	0.05
Initial conditions	IP-Glasma	TRENTO
Contributions	Hydro + Hadronic cascade	Hydro + Direct decay

 $> Var(v_2^2)_{dyn}$ shows a good agreement with Hydro-A

- $\succ C_k$ shows a good agreement with Hydro-A from central to mid central
- → Hydro-A overestimate $cov(v_2^2, [p_T])$

→ Hydro models can qualitatively describe the data ✓ Both Hydro-A and -B overestimates $\rho(v_2^2, [p_T])$

✤ Hydro comparisons

 (A) B.Schenke, C PRC 99, 044908 	.Shen, and P.Tribedy (2019)	 (B) P. Alba, et al. PRC 98, 034909 (2) 	2018)	×10 ⁻⁵	×10 ⁻⁴
	Hydro-A	Hydro-B	0.02	(a) Au+Au 200 GeV (Year 2011) STAR Preliminary $0.2 \le p_{max} \le 2.0$ (GeV/c)	$\begin{array}{c} (0) \\ - \\ - \\ \end{array} \qquad \begin{array}{c} \text{Hydrodynamics-A } \boxtimes \\ \text{Hydrodynamics-B} \end{array} \qquad \begin{array}{c} - \\ - \\ \end{array} \qquad \begin{array}{c} 6 \\ \end{array}$
η/s	0.12	0.05)dyn		
Initial conditions	IP-Glasma	TRENTO	$\operatorname{Nar}(v_{3}^{2})$		
Contributions	Hydro +	Hydro +			
	Hadronic cascade	Direct decay	(
$ > Var(v_3^2)_{dyn} $ shows a good agreement with Hydro-A 0.15 (c)					$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\succ C_k \text{ shows a good agreement with Hydro-A from} \qquad \qquad$					
→ Hydro-A within the uncertainty shows a good agreement with $cov(v_3^2, [p_T])$		($ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & $	
\rightarrow Hydro models can qualitatively describe the data					

✓ Both Hydro-A and -B overestimates $\rho(v_3^2, [p_T])$ in more central collisions

Niseem Magdy WPCF-2022

- The beam-energy dependence of the transverse momentumflow correlations
 - $> Var(v_2^2)_{dyn}$ decreases with beam-energy
 - $\succ C_k$ decreases with beam-energy
 - $\succ cov(v_2^2, [p_T])$ decreases with beam-energy

> The Pearson correlation, $\rho(v_2^2, [p_T])$, shows no significant energy dependence within the systematic uncertainties

The beam-energy dependance of the transverse momentum-flow correlations

 $> Var(v_3^2)_{dyn}$ decreases with beam-energy

- $\succ C_k$ decreases with beam-energy
- $\succ cov(v_3^2, [p_T])$ decreases with beam-energy

> The Pearson correlation, $\rho(v_3^2, [p_T])$, show no significant energy dependence within the systematic uncertainties

'AR 🖈

Conclusions

We studied the transverse momentum and the transverse momentum-flow correlations as a function centrality for different beam energies

- > The extracted $a_2^{p_T}$:
 - $\checkmark\,$ Decrease with harmonic order
 - ✓ Models don't describe the $a_2^{p_T}$ data
 - ✓ Event shape dependent
- > The slope of $\sigma_{\Delta\eta}(G_2)$ vs multiplicity is:
 - ✓ Softer for RHIC (indicating smaller η/s for RHIC) than LHC
 - ✓ Event shape independent

These comparisons are reflecting the efficacy of the $G_2(\Delta\eta, \Delta\varphi)$ correlator to differentiate among theoretical models as well as to constrain the η/s .

- ➤ Transverse momentum-flow correlations:
 - ✓ The $cov(v_n^2, [p_T])$ increases with beam energy
 - ✓ The normalized $\rho(v_n^2, [p_T])$:

Show little, if any, change with beam energy

The $\rho(v_n^2, [p_T])$ measurements show little, if any, change with beam energy, suggesting that $\rho(v_n^2, [p_T])$ is dominated by initial state effects.

