Investigations of the longitudinal broadening of two-particle transverse momentum correlations from STAR

Niseem Magdy (For the STAR Collaboration)¹

¹Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA

Two-particle transverse momentum correlator is a powerful technique for understanding the dynamics of relativistic heavy-ion collisions. Among these, the transverse momentum correlator $G_2(\Delta\eta,\Delta\varphi)$ is of particular interest for its potential sensitivity to the shear viscosity per entropy density η/s of the quark-gluon plasma formed in heavy-ion collisions [1,2]. We used Au–Au at $\sqrt{s_{\rm NN}}=200~{\rm GeV}$ data to investigate: (i) the self-correlations associated with the definition of the collision centrality[3], (ii) the longitudinal broadening of the $G_2(\Delta\eta,\Delta\varphi)$ correlator, (iii) the long range azimuthal dependence of the $G_2(\Delta\eta,\Delta\varphi)$. We will present the centrality and event shape dependence of the longitudinal width $\sigma(\Delta\eta)$ and the azimuthal harmonics a_n^{pT} of the $G_2(\Delta\eta,\Delta\varphi)$ correlator. Our measurements are compared to similar LHC measurements as well as with calculations using the UrQMD, AMPT, and EPOS models [4]. These comparisons are expected to reflect the efficacy of the $G_2(\Delta\eta,\Delta\varphi)$ correlator to differentiate among theoretical models as well as to constrain the η/s .

- [1] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006)
- [2] V. Gonzalez, et al., Eur.Phys.J.C 81 (2021) 5, 465
- [3] N. Magdy, et al., arXiv:2101.01555

10

11

12

13

14

15 16

17

18

19

20

[4] N. Magdy, et al., arXiv:2105.07912