Pion femtoscopy in p+Au and d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in the STAR experiment

Eugenia Khyzhniak
(for the STAR collaboration)
National Research Nuclear University MEPhI
NUCLEUS-2021
Work is partially funded by DOE
Outline

- Motivation
- Femtoscopy
- Correlation functions and their fits
- Systematic uncertainty
- k_T dependence of R_{inv} and λ
- System comparison
Motivation

Examination of the spatial and temporal scales of the particle-emitting source is one of the ways to study the process of particle production.

M. Podgoretky 1989 Particles & Nuclei 20 630-68

In small systems (like p+p or d+Au) a collision area size is sensitive to fluctuations of initial conditions. Therefore, the detailed nature of particle production becomes important.

Femtoscopy

- **Femtoscopy allows one to measure:**
 - Size of the emission source
 - Source shape & orientation
 - Lifetime & Emission duration

- **System expansion dynamics are influenced by:**
 - Transport properties
 - Phase transition/Critical point
 - Initial-state event shape

Extracted radii measure the homogeneity lengths of the source

Analysis technique

Construction of the correlation function:

\[C(Q_{\text{inv}}) = \frac{A(Q_{\text{inv}})}{B(Q_{\text{inv}})} \]

\[Q_{\text{inv}} = \sqrt{(p_1^2 - p_2^2)^2 - (E_1 - E_2)^2} \]

\[A(Q_{\text{inv}}) - Q_{\text{inv}} \text{ distribution with Bose-Einstein statistics (and final-state interactions – Coulomb and strong)} \]

\[B(Q_{\text{inv}}) - Q_{\text{inv}} \text{ distribution without it (reconstructed by event-mixing technique)} \]

Fit of the correlation function:

\[C(Q_{\text{inv}}) = N \left(1 - \lambda + \lambda K_{\text{Coul}}(Q_{\text{inv}})(1 + G(Q_{\text{inv}})) \right) D(Q_{\text{inv}}) \]

\[G(Q_{\text{inv}}) = e^{-q_{\text{inv}}^2 R_{\text{inv}}^2} \]

1) Schematic view

2) Fit of the correlation function:

- \(N \) - normalization factor
- \(\lambda \) - correlation strength parameter
- \(K_{\text{Coul}} \) - is a squared like-sign pion pair Coulomb wave-function integrated over a spherical Gaussian source

\[D(Q_{\text{inv}}) = 1 \text{ (in this analysis) – Non-femtoscopic correlations} \]
The STAR experiment

- **Colliding systems:**
 - d+Au@200 GeV
 - p+Au@200 GeV

- **Pion identification:**
 - Time Projection Chamber (TPC) - main tracking detector, $|\eta| < 1.0$, full azimuth
Correlation functions and their fits look reasonable.

Lorentzian fit assumption:
\[G(Q_{inv}) = e^{-q_{inv}^2 R_{inv}^2} \]

Gaussian fit assumption:
\[G(Q_{inv}) = e^{-q_{inv}^2 R_{inv}^2} \]

d+Au and p+Au systems comparison

\[\vec{k}_T = \frac{\vec{p}_{1T} + \vec{p}_{2T}}{2} \]
Statistical and systematic uncertainty

- For almost all cases statistical uncertainty smaller than marker size

- Sources of the systematic uncertainty:
 - Selection criteria of the events (position of the primary vertex): < 5%
 - Selection criteria of the tracks (momentum of the tracks, tracking efficiencies): < 6%
 - Selection criteria of the pairs (two track effects – merging, splitting): < 2%
 - Fit range: < 3%
 - Coulomb radius: < 3%

- Plan to investigate single track momentum resolution
k_T dependence of R_{inv} and λ

- Radii decrease with increasing k_T
- Radii increase with increasing particle multiplicity
- Correlation strength parameter λ decreases with particle multiplicities
 - Influence of the resonances increases?

$d+Au@200GeV$

$p+Au@200GeV$
System comparison (R_{inv} vs. k_T)

- Radii increase with increasing size of the colliding system
- Weak radius dependence on colliding system (especially for $k_T > 0.35$ GeV/c)

- The femtoscopic radii difference between colliding species becomes smaller with increasing k_T
Summary

- Femtoscopic parameters were obtained for p/d+Au systems

- The k_T dependence of the R_{inv} shows the collective dynamics of the system (system expansion) and allows to probe the different regions of the homogeneity in both p/d+Au systems

- Radii increase with increasing particle multiplicity

- The femtoscopic radii difference between colliding species becomes smaller with increasing k_T
Thank you for your attention!
Back-up slide
Selection criteria

<table>
<thead>
<tr>
<th>Event cuts</th>
<th>Track cuts</th>
<th>Pair cuts</th>
<th>Pion TPC cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Z_{TPC}</td>
<td>< 40$</td>
<td>$N_{Hits} > 15$</td>
</tr>
<tr>
<td>$\sqrt{X_{TPC}^2 + Y_{TPC}^2} < 2$</td>
<td>$N_{Hits}/N_{HitsFit} > 0.51$</td>
<td>0.15 < k_t (GeV/c) < 1.05</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>Z_{TPC} - Z_{VPD}</td>
<td>< 5$</td>
<td>DCA < 2 cm</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>η</td>
<td>< 0.5$</td>
</tr>
<tr>
<td></td>
<td>0.15 < p (GeV/c) < 0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>