

Pion femtoscopy in p+Au and d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in the STAR experiment

Eugenia Khyzhniak

(for the STAR collaboration)

National Research Nuclear University MEPhI

NUCLEUS-2021

Work is partially funded by DOE

Outline

➢Motivation

>Femtoscopy

Correlation functions and their fits

>Systematic uncertainty

 $\succ k_T$ dependence of R_{inv} and λ

≻System comparison

Motivation

Examination of the spatial and temporal scales of the particleemitting source is one of the ways to study the process of particle production.

M. Podgoretky 1989 Particles & Nuclei 20 630-68 In small systems (like p+p or d+Au) a collision area size is sensitive to fluctuations of initial conditions. Therefore, the detailed nature of particle production becomes important.

> A. Bzdak et al. 2013 Phys. Rev. C 87, 064906 C. Plumberg 2020 arXiv:2008.01709

Femtoscopy

Extracted radii measure the homogeneity lengths of the source Akkelin SV, Sinyukov YM. Phys. Lett. B356:525 (1995)

- Femtoscopy allows one to measure:
 - Size of the emission source
 - Source shape & orientation
 - Lifetime & Emission duration

• System expansion dynamics are influenced by:

- Transport properties
- Phase transition/Critical point
- Initial-state event shape

Analysis technique

Schematic view

 $\mathcal{C}(Q_{inv})$

Construction of the correlation function:

 $C(Q_{inv}) = \frac{A(Q_{inv})}{B(Q_{inv})}$

$$Q_{inv} = \sqrt{(\vec{p_1} - \vec{p_2})^2 - (E_1 - E_2)^2}$$

A(Q_{inv}) – Q_{inv} distribution with Bose-Einstein statistics (and final-state interactions – Coulomb and strong)

 $B(Q_{inv}) - Q_{inv}$ distribution without it (reconstructed by event-mixing technique)

> N – normalization factor λ – correlation strength parameter K_{Coul} - is a squared like-sign pion pair Coulomb wave-function integrated over a spherical Gaussian source

Lednicky R. et al. B 1998 Phys. Lett. B 432 248-257 Bowler M 1998 Phys. Lett. B 270 69-74

 $D(Q_{inv}) = 1$ (in this analysis) – Nonfemtoscopic correlations

Fit of the correlation function:
2)
$$C(Q_{inv}) = N\left(1 - \lambda + \lambda K_{Coul}(Q_{inv})(1 + G(Q_{inv}))\right) D(Q_{inv})$$

$$G(Q_{inv}) = e^{-q_{inv}^2 R_{inv}^2}$$

The STAR experiment

≻Colliding systems:
>d+Au@200 GeV
>p+Au@200 GeV

>Pion identification:

 ≻Time Projection Chamber (TPC) - main tracking detector, |η| < 1.0, full azimuth

STA

Example of the correlation functions and fits

d+Au and p+Au systems comparison

Correlation functions and their fits look reasonable

$$\vec{k}_T = \frac{\vec{p}_1}{2} + \vec{p}_2}{2}$$

Lorentzian fit assumption: $G(Q_{inv}) = e^{-q_{inv}R_{inv}}$

Statistical and systematic uncertainty

- For almost all cases statistical uncertainty smaller than marker size
- > Sources of the systematic uncertainty:
 - Selection criteria of the events (position of the primary vertex): < 5%</p>
 - Selection criteria of the tracks (momentum of the tracks, tracking efficiencies): < 6%</p>
 - Selection criteria of the pairs (two track effects merging, splitting): < 2%</p>
 - > Fit range: < 3%
 - ≻ Coulomb radius: < 3%
- > Plan to investigate single track momentum resolution

k_{T} dependence of R_{inv} and λ

● 1≤N_⊾≤10

0.4

0.3

■ 11≤N_{ch}≤20

0.6

0.6

k_τ (GeV/c)

k_T (GeV/c)

▲ 21≤N_{ch}≤30 ▼ 31≤N_{ch}≤40

STAR Preliminary

0.5

● 1≤N_{ch}≤10 ■ 11≤N_{ch}≤20

▲ 21≤N_{ch}≤30 ▼ 31≤N_{ch}≤40

STAR Preliminary

0.5

0.4

0.3

d+Au@200GeV

- > Radii decrease with increasing kT
- > Radii increase with increasing particle multiplicity
- > Correlation strength parameter λ decreases with particle multiplicities • Influence of the resonances increases?

System comparison ($R_{inv}vs. k_T$)

> Radii increase with increasing size of the colliding system

- \succ Weak radius dependence on colliding system (especially for $k_{\rm T} > 0.35 {\rm GeV/c})$
- > The femtoscopic radii difference between colliding species becomes smaller with increasing k_T

- >Femtoscopic parameters were obtained for p/d+Au systems
- >The k_T dependence of the R_{inv} shows the collective dynamics of the system (system expansion) and allows to probe the different regions of the homogeneity in both p/d+Au systems
- >Radii increase with increasing particle multiplicity
- >The femtoscopic radii difference between colliding species becomes smaller with increasing $k_{\rm T}$

Thank you for your attention!

Back-up slide

Selection criteria

Event cuts	Track cuts	Pair cuts	Pion TPC cuts
$ Z_{TPC} $ (cm) < 40	$N_{Hits} > 15$	-0.5 < Splitting Level (quality) < 0.6	$ n\sigma_{pion} < 2$
$\sqrt{X_{TPC}^2 + Y_{TPC}^2}$ (cm) < 2	$N_{Hits}/N_{HitsFit} > 0.51$	$0.15 < k_T (GeV/c) < 1.05$	$ n\sigma_{other} > 2$
$ Z_{TPC} - Z_{VPD} \text{ (cm)} < 5$	DCA < 2 cm	Average Separation of two tracks within TPC volume (cm) > 10	
	$ \eta < 0.5$	-1.1 < Fraction of Merged Hits (%) < 0.1	
	0.15		

STAR