

One-dimensional pion femtoscopy in d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV from STAR

Eugenia Khyzhniak

(for the STAR collaboration)

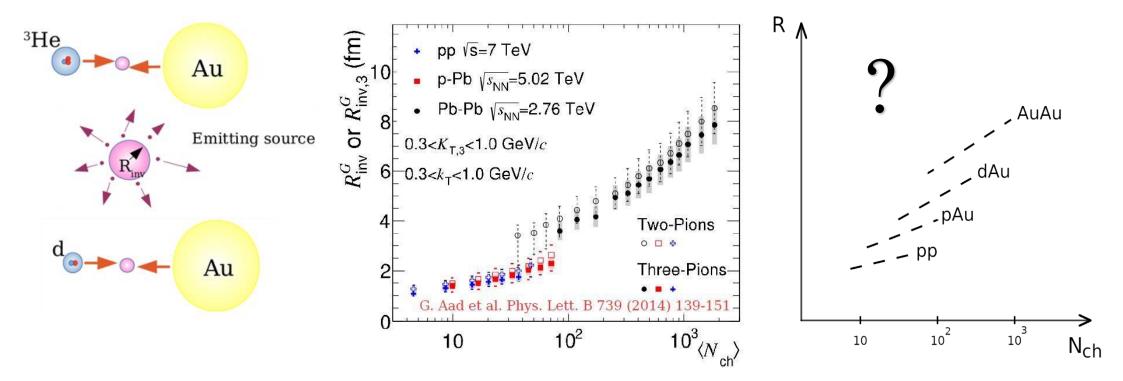
National Research Nuclear University MEPhI

NUCLEUS-2020

Outline

➢Motivation

>Femtoscopy

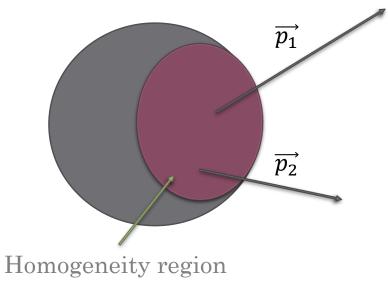

>Correlation functions and their fits

>Systematic uncertainty

 $\succ k_T$ dependence of R_{inv} and λ

≻System comparison

Motivation


Examination of the spatial and temporal scales of the particleemitting source is one of the ways to study the process of particle production.

M. Podgoretky 1989 Particles & Nuclei 20 630-68 In small systems (like p+p or d+Au) a collision area size is sensitive to fluctuations of initial conditions. Therefore, the detailed nature of particle production becomes important.

> A. Bzdak et al. 2013 Phys. Rev. C 87, 064906 C. Plumberg 2020 arXiv:2008.01709

3

Femtoscopy

Extracted radii measure the homogeneity lengths of the source Akkelin SV, Sinyukov YM. Phys. Lett. B356:525 (1995)

- Femtoscopy allows one to measure:
 - Size of the emission source
 - Source shape & orientation
 - Lifetime & Emission duration

• System expansion dynamics are influenced by:

- Transport properties
- Phase transition/Critical point
- Initial-state event shape

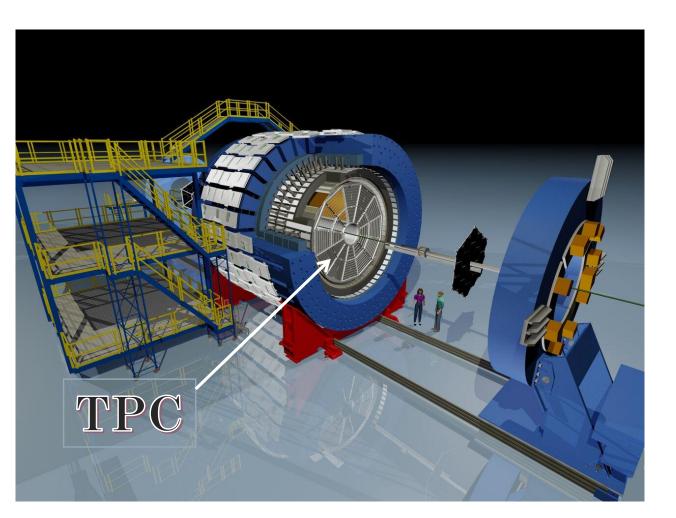
Analysis technique

Schematic view $C(Q_{inv})$ R Q_{inv} Construction of the correlation function:

$$C(Q_{inv}) = \frac{A(Q_{inv})}{B(Q_{inv})}$$

$$Q_{inv} = \sqrt{(\overrightarrow{p_1} - \overrightarrow{p_2})^2 - (E_1 - E_2)^2}$$

A(Q_{inv}) – Q_{inv} distribution with Bose-Einstein statistics (and final-state interactions – Coulomb and strong)
 B(Q_{inv}) – Q_{inv} distribution without it

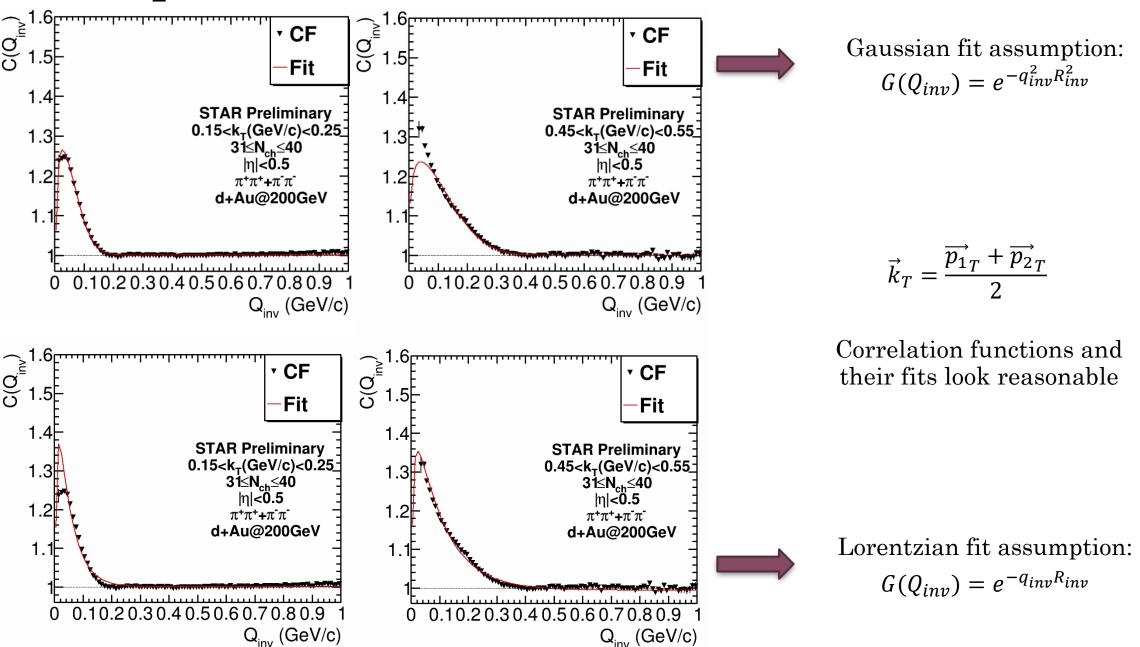

Fit of the correlation function:
2)
$$C(Q_{inv}) = N \left(1 - \lambda + \lambda K_{Coul}(Q_{inv}) \left(1 + G(Q_{inv})\right)\right) D(Q_{inv})$$

$$G(Q_{inv}) = e^{-q_{inv}^2 R_{inv}^2}$$

N - normalization factor λ - correlation strength parameter K_{Coul} - Coulomb correction factor $D(Q_{inv}) = 1$ (*in this analysis*) - Nonfemtoscopic correlations

Eugenia Khyzhniak 09.10.2020

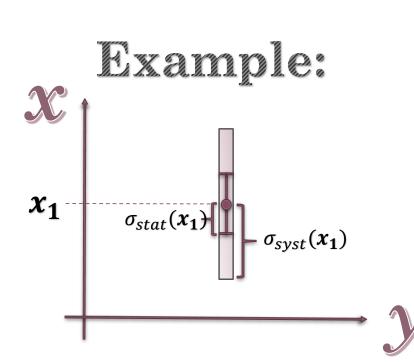
STAR


The STAR experiment

≻Colliding system: >d+Au@200 GeV

>Pion identification:

Time Projection Chamber (TPC) - main tracking detector, $|\eta| < 1.0$, full azimuth


Example of the correlation functions and fits

Statistical and systematic uncertainty

- For almost all cases statistical uncertainty smaller than marker size
- > Sources of the systematic uncertainty:
 - Selection criteria of the events (position of the primary vertex): < 5%</p>
 - Selection criteria of the tracks (momentum of the tracks, tracking efficiencies): < 6%</p>
 - Selection criteria of the pairs (two track effects merging, splitting): < 2%</p>
 - \succ Fit range: < 3%
 - ≻ Coulomb radius: < 3%
- > Plan to investigate single track momentum resolution

k_T dependence of R_{inv} and λ

- > Radius decreases with increasing k_T
- > Radius increases with increasing particle multiplicity

 Correlation strength parameter decreases with particle multiplicities

 Influences of the resonances increases?

- >Femtoscopic parameters were obtained for d+Au colliding system
- >The k_T dependence of the R_{inv} shows the dynamic of the system and allows to probe the different regions of the homogeneity in d+Au system
- >Radius increases with increasing particle multiplicity
- Correlation strength parameter decreases with particle multiplicities

Thank you for your attention!

Eugenia Khyzhniak 09.10.2020

VI

Back-up slide

Selection criteria

Event cuts	Track cuts	Pair cuts	Pion TPC cuts
$ Z_{TPC} $ (cm) < 40	$N_{Hits} > 15$	-0.5 < Splitting Level (quality) < 0.6	$\left n\sigma_{pion}\right < 2$
$\sqrt{X_{TPC}^2 + Y_{TPC}^2}$ (cm) < 2	$N_{Hits}/N_{HitsFit} > 0.51$	$0.15 < k_T (GeV/c) < 1.05$	$ n\sigma_{other} > 2$
$ Z_{TPC} - Z_{VPD} \text{ (cm)} < 5$	DCA < 2 cm	Average Separation of two tracks within TPC volume (cm) > 10	
	$ \eta < 0.5$	-1.1 < Fraction of Merged Hits (%) < 0.1	
	0.15		

STAR