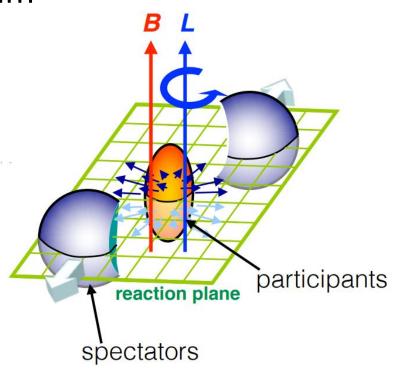


Global polarization of Ξ hyperons in Au+Au collisions in the STAR experiment

Outline:

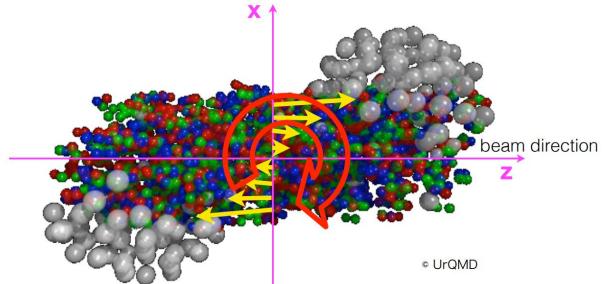
- Introduction
- Global hyperon polarization
- Motivation
- The STAR experiment
- Hyperon polarization measurements
- Results
- Conclusions

Egor Alpatov (for the STAR Collaboration)


National Research Nuclear University MEPhl

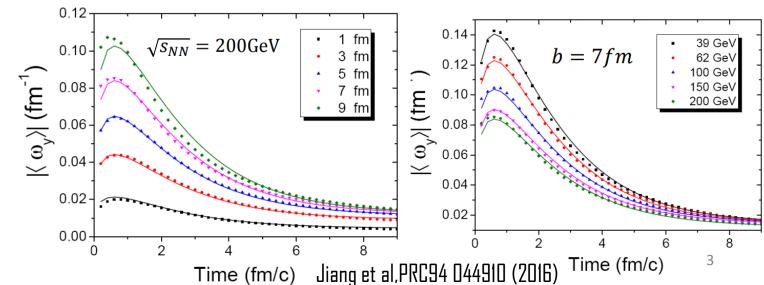
Introduction

- The Quark-Gluon Plasma (QGP) formed in non-central nucleus-nucleus collisions is associated with large angular momentum, that leads to <u>vorticity</u> in the medium
- Spin-orbit coupling aligns spin directions of produced particles with the direction of <u>vorticity</u>
 - > Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
 - ➤ S. A. Voloshin, arXiv:nucl-th/0410089
- Another possible source of particle polarization is magnetic field, created in non-central collisions in the initial stage
 - D. Kharzeev, L. McLerran, and H. Warringa, Nucl.Phys.A803, 227 (2008)
 - ➤ McLerran and Skokov, Nucl. Phys. A929, 184 (2014)



impact parameter

• In non-central HIC the initial collective longitudinal flow velocity depends on x:


$$\omega_y = \frac{1}{2} (\nabla \times v)_y \approx -\frac{1}{2} \frac{dv_z}{dx}$$

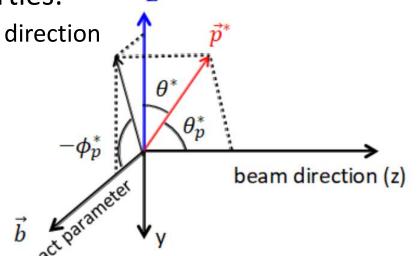
• For small polarization:

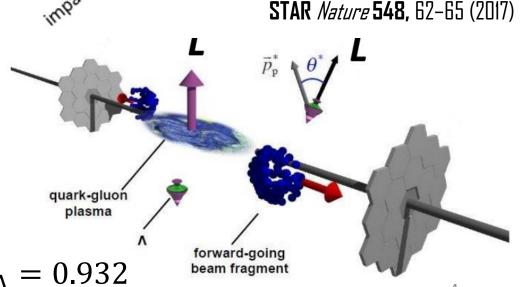
Becattini, Karpenko, Lisa, Upsal, Voloshin PRC95.054902 (2017)

$$P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$

$$P_{\overline{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$

How to measure global polarization?

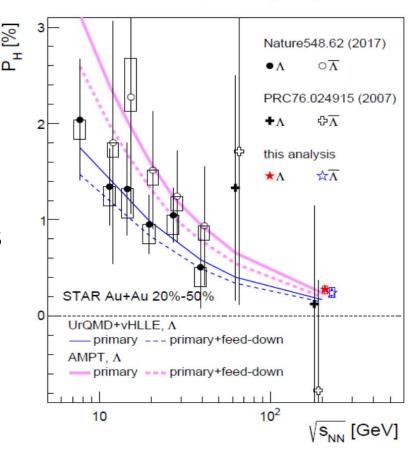

- Hyperons are "self-analyzing" due to weak decay properties:
 - Daughter baryons are preferentially emitted along parent spin direction
- Daughter baryons of hyperons with polarization (\vec{P}) follows the distribution:


$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H |\overrightarrow{P}| \cdot \widehat{p_b^*} \right) = \frac{1}{4\pi} \left(1 + \alpha_H P \cos \theta^* \right)$$

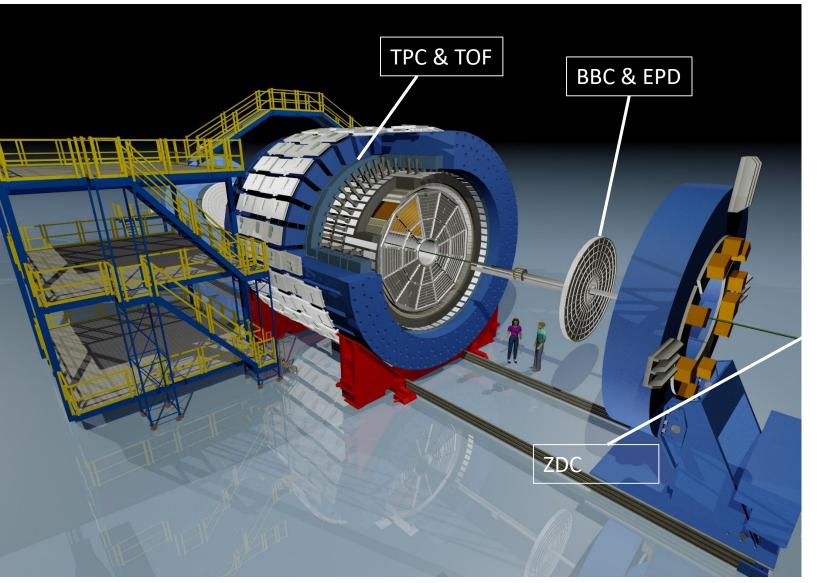
- α_H decay parameter, unique for each hyperon species
- $\widehat{p_b^*}$ is the daughter baryon momentum in the parent frame
- Projection to the transverse plane can be measured:

$$P_{H} = \frac{8}{\pi \alpha_{H}} \frac{\langle sin(\psi_{1} - \varphi_{p}^{*}) \rangle}{Res(\psi_{1})}$$

- ψ_1 is the reaction plane angle
- ψ_1 and its resolution $Res(\psi_1)$ can be calculated with spectator's signal.
- Ξ global polarization could also be measured via its daughter Λ polarization with transfer factor $C_{\Xi\Lambda}=0.932$


Motivation

- Global polarization of Λ hyperons was measured for $\sqrt{s_{NN}} = 7.7\text{-}200$ GeV at STAR
- P_H decreases with increasing collision energy
- Difference between P_{Λ} and $P_{\overline{\Lambda}}$ maybe due to B-field effect
- Theoretical calculations can quantitively explain the energy dependence of the Λ polarization, but many of them fail to explain differential measurements
- Nowadays there is a growing interest to measure the global polarization of other hyperons such as Ξ .
- <u>E</u> polarization may provide new input for global polarization and vorticity studies


STAR PRC 98, 014910 (2018)

The STAR experiment

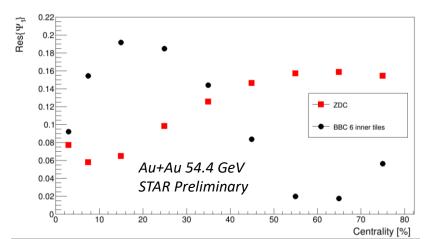
Hyperon reconstruction:

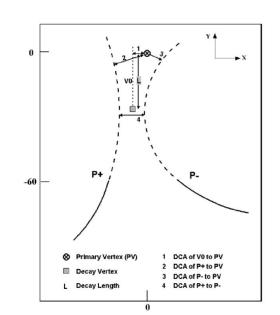
- Time Projection Chamber $|\eta| \in [-1, 1]$
- Time-Of-Flight
 |η| ∈ [-0.9, 0.9]

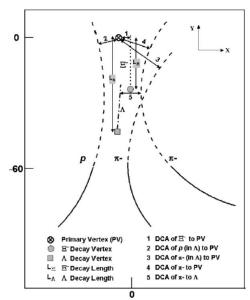
Event plane angle measurement:

- Beam-Beam Counter
 |η| ∈ [3.3, 5.0]
- Event-Plane Detector
 |η| ∈ [2.1, 5.1]
- Zero Degree Calorimeter
 |η| > 6.3

Experimental technique

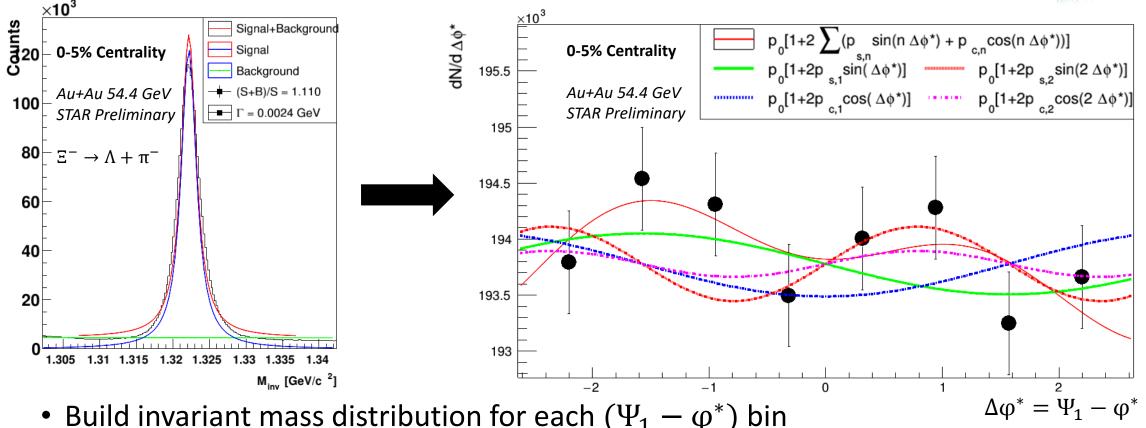

• Event plane Ψ_1 is determined by detectors at forward rapidity where directed flow is large


$$\Psi_1 = \tan^{-1}\left(\frac{\sum w_i \sin(\phi_i)}{\sum w_i \cos(\phi_i)}\right) \text{ , where } w_i \text{ is detector's tile ADC}$$


- $Res(\Psi_{1,Forward \, \eta}) = Res(\Psi_{1,Backward \, \eta}) = \sqrt{\langle \cos(\Psi_{1,Forward \, \eta} \Psi_{1,Backward \, \eta}) \rangle}$
- BBC and ZDC for $\sqrt{s_{NN}}=54.4~{\rm GeV}$, EPD and BBC for $\sqrt{s_{NN}}=27~{\rm GeV}$

A. M. Poskanzer, S. A. Voloshin, PRC58.1671(1998)

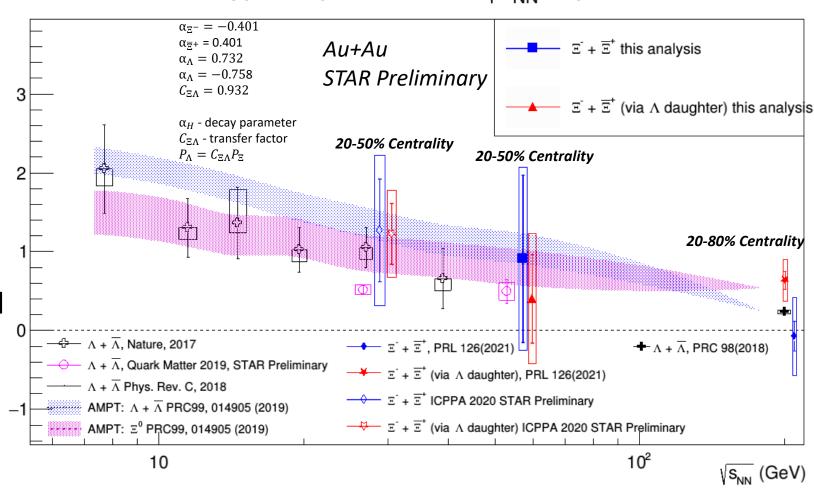
- Hyperon reconstruction performed via decay topology
- Λ daughters identified via TPC and TOF
- Ξ were reconstructed via $\Xi \to \Lambda + \pi$



Global polarization: event-plane method

- Build invariant mass distribution for each $(\Psi_1 \phi^*)$ bin
- Subtract background and integrate subtracted distribution
- Fit $dN/d(\Psi_1 \phi^*)$ with Fourier function up to 2^{nd} order
- Coefficient for $sin(\Delta \phi^*)$ term is what we're looking for

Results



Global hyperon polarization

s_{NN} dependence

- Global polarization of E hyperons consistent with model predictions
- Experimental results for
 global polarization
 consistent with each other with
 given large uncertainties
 at different collision energies
- Ξ global polarization, measured via its daughter Λ decays is consistent with direct method
- Ξ and inclusive Λ global polarization are consistent within statistical uncertainties

Conclusions

- We presented first results of $\Xi + \overline{\Xi}$ global polarization measurements in Au+Au collisions at 54.4 GeV
- $\Xi+\overline{\Xi}$ global polarization is comparable to $\Lambda+\overline{\Lambda}$ global polarization within uncertainties
- We are looking forward to continuing this measurements at other energies

Thank you for your attention!