Measurements of azimuthal anisotropies in ${}^{16}\text{O}+{}^{16}\text{O}$ and $\gamma+\text{Au}$ collisions from STAR

Shengli Huang and Prithwish Tribedy

¹ Collectivity in small systems is a crucial area of study in high-energy nu-² clear physics, as it provides valuable insights into initial conditions and pre-³ equilibrium stages in heavy-ion collisions. The small system collision scan ⁴ at RHIC, including both symmetric and asymmetric small systems (O+O > ⁵ ³He+Au > d+Au > p+Au > γ +Au), provides a better understanding of how ⁶ collectivity emerges and evolves with system size.

⁷ We analyze a large sample of minimum bias and central triggered ¹⁶O+¹⁶O ⁸ collisions at $\sqrt{s_{NN}} = 200$ GeV and inclusive γ +Au processes (center-of-mass ⁹ energy around 40 GeV) by triggering ultra-peripheral events in Au+Au collisions ¹⁰ at $\sqrt{s_{NN}} = 200$ GeV. Using two- and four-particle correlation methods, we ¹¹ present the first measurements of azimuthal anisotropies, v_2 and v_3 , in ¹⁶O+¹⁶O ¹² and γ +Au collisions as a function of $p_{\rm T}$ and multiplicity. We compare our ¹³ measurements with STAR measurements of v_n in $p/d/^3$ He+Au collisions and ¹⁴ hydrodynamic model calculations.

¹⁵ New v_n measurements in ¹⁶O+¹⁶O collisions provide insight into the im-¹⁶ pact of system symmetry on initial condition and pre-equilibrium dynamics, ¹⁷ compared to the previously studied asymmetric systems $p/d/^{3}$ He+Au. We also ¹⁸ investigate the ratio $v_2\{4\}/v_2\{2\}$ and correlations between v_n and mean p_T as ¹⁹ a function of multiplicity, which are sensitive to initial momentum anisotropy, ²⁰ subnucleon fluctuations, and clustering in the ¹⁶O nucleus. In addition, v_n ²¹ measurements in γ +Au processes play an important role in understanding the ²² origin of collectivity and lay the foundation for searching for many-body systems ²³ exhibiting collective behavior in photon-induced processes at the EIC.