\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{ulem} \usepackage{amssymb} \usepackage{xspace} % Include xspace \usepackage{amsmath} \usepackage{multirow} \usepackage{float} \usepackage{harpoon} \usepackage{MnSymbol} \usepackage{appendix} \usepackage{color} \RequirePackage{lineno} \setlength{\linenumbersep}{4pt} \makeatletter \newcommand{\mathrmnum}[1]{\romannumeral #1} %\newcommand{\mathrmnum}[1]{\expandafter\@slowromancap\romannumeral #1@} \makeatother \makeatletter % `@' now normal "letter" \@addtoreset{equation}{section} \makeatother % `@' is restored as "non-letter" \setcounter{MaxMatrixCols}{10} %TCIDATA{OutputFilter=Latex.dll} %TCIDATA{Version=4.10.0.2345} %TCIDATA{LastRevised=Friday, October 26, 2007 15:45:40} %TCIDATA{} \newcommand{\Yphi}{$Y(\Delta\phi)$} \newcommand{\YphiTempl}{Y(\Delta\phi)^{\mathrm {templ}}} \newcommand{\YphiRidge}{Y(\Delta\phi)^{\mathrm{ridge}}} \newcommand{\YphiPer}{Y(\Delta\phi)^{\mathrm{LM}}} \newcommand{\Yphipp}{Y(\Delta\phi)^{pp}} \newcommand{\sqsn}{\mbox{$\sqrt{s_{_{\mathrm{NN}}}}$}\xspace} \newcommand{\dphi}{\Delta\phi} \newcommand{\TopE}{$\sqrt{s_{_{\mathrm{NN}}}}=200$ GeV } \newcommand{\sqrtsNN}{\mbox{$\sqrt{s_{\mathrm{NN}}}$}} \newcommand{\sqrtsnn}{\mbox{$\sqrt{s_{\mathrm{NN}}}$}} \newcommand{\npart}{\mbox{$N_{\mathrm{part}}$}} \newcommand{\ncoll}{\mbox{$N_{\mathrm{coll}}$}} \newcommand{\pT} {p_{\mathrm{T}}} \newcommand{\pPb}{\mbox{$p$+Pb}} \newcommand{\lr}[1]{\left\langle #1\right\rangle} \newcommand{\llrr}[1]{\left\llangle #1\right\rrangle} \newcommand{\Dphi}{\mbox{$\Delta \phi$}} \newcommand{\Deta}{\mbox{$\Delta \eta$}} \newcommand{\nch}{N_{\mathrm{ch}}} \newcommand{\nchb}{N_{\mathrm{ch}}} \newcommand{\heau}{\mbox{$^{3}$He$+$Au}\xspace} \newcommand{\dau}{\mbox{$d$$+$Au}\xspace} \newcommand{\pp}{\mbox{$p$$+$$p$}\xspace} \newcommand{\oo}{\mbox{^{16}O+^{16}O}\xspace} \newcommand{\pau}{\mbox{$p$$+$Au}\xspace} \begin{document} %\begin{center} \title{\Large Measurements of azimuthal anisotropies in $^{16}$O+$^{16}$O and $\gamma$+Au collisions from STAR} \vspace{8mm} \author{Shengli Huang and Prithwish Tribedy} \date{} \maketitle %\end{center} \linenumbers Collectivity in small systems is a crucial area of study in high-energy nuclear physics, as it provides valuable insights into initial conditions and pre-equilibrium stages in heavy-ion collisions. The small system collision scan at RHIC, including both symmetric and asymmetric small systems (O+O $>$ \heau $>$ \dau $>$ \pau $>$ $\gamma+$Au), provides a better understanding of how collectivity emerges and evolves with system size. We analyze a large sample of minimum bias and central triggered $^{16}$O+$^{16}$O collisions at $\sqrt{s_{NN}}$ = 200 GeV and inclusive $\gamma$+Au processes (center-of-mass energy around 40 GeV) by triggering ultra-peripheral events in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Using two- and four-particle correlation methods, we present the first measurements of azimuthal anisotropies, $v_2$ and $v_3$, in $^{16}$O+$^{16}$O and $\gamma$+Au collisions as a function of $\pT$ and multiplicity. We compare our measurements with STAR measurements of $v_n$ in $p/d/^3$He+Au collisions and hydrodynamic model calculations. New $v_{n}$ measurements in $^{16}$O+$^{16}$O collisions provide insight into the impact of system symmetry on initial condition and pre-equilibrium dynamics, compared to the previously studied asymmetric systems $p/d/^3$He+Au. We also investigate the ratio $v_2\{4\}/v_2\{2\}$ and correlations between $v_n$ and mean $\pT$ as a function of multiplicity, which are sensitive to initial momentum anisotropy, subnucleon fluctuations, and clustering in the $^{16}$O nucleus. In addition, $v_{n}$ measurements in $\gamma$+Au processes play an important role in understanding the origin of collectivity and lay the foundation for searching for many-body systems exhibiting collective behavior in photon-induced processes at the EIC. \end{document}