

p-p, p-p, and p-p Femtoscopic Correlations in the RHIC Beam Energy Scan in STAR

Andrew Peterson for the STAR Collaboration

Ohio Section Regional APS Meeting March 27-28, 2015

Outline

- Motivation
- Femtoscopy Overview

- Detector and Dataset
- Measured Correlation Functions: C_{Im}(k*)
 - {p, \overline{p} } pairings at $\sqrt{s_{NN}}$ = 200, 39, and 19.6 GeV

Baryon and Anti-Baryon observables are dramatically different vs collision energy

- B and B v₂ splitting is a possible sign of partonic DoF turning off
 - phase transition?
- What could Radial Flow do to the v₂ signal?

PhysRevLett.110.142301

Geometric Effects on Radial Flow

Radial Flow Field in Semi-Central Event

 If B are emitted further out than B in the transverse plane, then with radial flow:

$$v_2(\mathbf{B}) > v_2(\bar{\mathbf{B}})$$

(converse also true)

What might affect
 Baryon Emission Geometry?

Do Baryons and Anti-Baryons come from different places in the source? $N_{\bar{\rm B}}(r)=e^{-2\mu_{\rm B}(r)/T(r)}N_{\rm B}(r)$

Unclear: Interplay between $\mu_B(r)$ and T(r)

Temperature dependence stronger

 Thermal B-B production in center of collision

 $\langle r_B \rangle > \langle r_{\bar{B}} \rangle$

Steinheimer, Koch, and Bleicher arXiv:1207.2791 Baryon density dependence stronger

Annihilation will wipe out
 B in center of source

 $\langle r_B \rangle < \langle r_{\bar{B}} \rangle$

Heinz, Shen Private Communication

Contradictory predictions, even in sign, for $\langle r_B \rangle - \langle r_{\bar{B}} \rangle$...

Femtoscopy Overview

• Relative Momentum Correlations between particles are sensitive to Spatial Correlations:

$$\mathcal{R}(\vec{k}^*) \equiv \mathcal{C}(\vec{k}^*) - 1 = \int d^3 r^* \mathcal{S}_{\vec{k}^*}(\vec{r}^*) \left[|\phi(\vec{r}^*, \vec{k}^*)|^2 - 1 \right]$$

- * denotes Pair Rest Frame (PRF)
- Two-Particle Source Function $\mathcal{S}_{\vec{k}^*}(\vec{r}^*)$
- Two-Particle Wavefunction $\phi(\vec{r}^{*},\vec{k}^{*})$
- Femtoscopic Measurements: $C(\vec{k}^*) = \frac{\mathcal{N}(k^*)}{\mathcal{D}(\vec{k}^*)}$

- $\mathcal{N}(\vec{k}^*)$ from single events (correlations \otimes phase space) - $\mathcal{D}(\vec{k}^*)$ from mixed events (phase space)

Andrew Peterson

Non-Identical Particle Femtoscopy

- The Femtoscopic Source Function is a convolution of Single-Particle Source Functions
 - Often assumed to be a Gaussian in PRF

 Non-Identical Species are sensitive to the relative displacement in homogeneity regions

$$S(\vec{r}^*) \sim \exp\left[-\frac{(r_o^* - \Delta_o)^2}{4R_o^2} - \frac{r_s^{*2}}{4R_s^2} - \frac{r_l^{*2}}{4R_l^2}\right]$$

• for symmetric rapidity, event plane insensitive

Non-Identical Particle Femtoscopy

Central Collision w/ Radial Flow

Measurable Homogeneity Regions

- Relative distributions of B and B can be measured versus √s_{NN} via the RHIC Beam Energy Scan
 - Using p and \overline{p} as proxies

Detector, Cuts, and Dataset

- STAR TPC + ToF
 - PID
 - Full Azimuth
 - |η| < 1
- Spalled p cut

 p_T > 0.4 GeV/c

 Anti Splitting and Merging Pair Cuts

p-p only: Anti Di-Electron Pair Cut

• Beam Energy Scan: Au+Au @ $\sqrt{s_{NN}}$ = 7.7 to 200 GeV

March 27-28, 2015

Andrew Peterson

 Δ_{o} Sensitive Harmonic C₁₁

- Possible signs of non-zero $\Delta_{\!\scriptscriptstyle o}$ at lower energies

$$- C_{11} \neq 0 \text{ if } \Delta_{o} \neq 0$$

Need more statistics at 19.6 GeV

p-p

Summary and Conclusion

- B and \overline{B} Observables differ vs Collision Energy
 - B/B Emission Geometry + Radial Flow?
- Femtoscopy is sensitive to the displacement between particle homogeneity regions

- Femtoscopic Correlation Functions for p-p, p- \overline{p} , and \overline{p} -p at $\sqrt{s_{NN}}$ = 200, 39, and 19.6 GeV shown
- Small hints at non-zero Δ_o seen in p- \overline{p} C₁₁!?
 - Next steps are to fit p-p C_{Im} 's for Radii and Δ_o
 - Hopeful for more 19.6 GeV data from next BES

Backup Slides

Flow Coefficients

Flow Coefficients v_n from Spectra

$$\frac{\mathrm{d}N}{p_T \mathrm{d}p_T \mathrm{d}(\Delta\phi)} = \frac{1}{2\pi} \left[1 + 2\sum_{n \text{ even}} v_n \cos(n\Delta\phi) + 2\sum_{n \text{ odd}} v_n \sin(n\Delta\phi) \right]$$

Cuts

- |p_T| > 0.4 GeV/c
- $|\hat{\mathbf{a}} \cdot |n\sigma_p| < 2$ $|\mathbf{y}| < 0.7$
- ToF Match PID
 - -0.4 < |p| < 2.5 GeV/c

- $Q_{p} = +1e$ $Q_{\overline{p}} = -1e$
- NHits_{TPC} ≥ 15
- DCA_{xy,global} < 2 cm
- No ToF Match
 - -0.4 < |p| < 0.8 GeV/c
- $-0.8 < m^2 < 0.95 (GeV/c^2)^2 |n\sigma_e| \& |n\sigma_k| \& |n\sigma_{\pi}| > 2$
- -0.5 < Quality Cut < 0.6
- 6 < Average Track Separation < 500 cm
 Fraction of Merged TPC Padrows < 10%
 - p-p only: Anti Di-Electron Pair Cut

d)

Andrew Peterson