

Open charm hadron measurements at STAR

Qiu, Hao (LBNL) for the STAR Collaboration

Why charm quark?

- $m_c >> T_C, \Lambda_{QCD}, m_{u,d,s}$
- Produced early in initial hard scatterings at RHIC
- Experience the whole evolution of the medium
- Good probe to the properties of the medium

STAR detectors (2012)

STAR * Open charm hadron reconstruction

Hard Probes 2015

STAR * Open charm hadron reconstruction

Hard Probes 2015

STAR ★ Open charm production in p+p

STAR * Open charm production in Au+Au

Total charm production scales with the number of binary collisions at RHIC

STAR * Nuclear modification factor

- Large suppression at high p_T points to strong charm-medium interaction
- Indication of enhancement $p_T \sim 0.7$ -2GeV/c, described by models with coalescence of charm and light quarks
- Cold nuclear effects (Cronin, shadowing) could be important Hard Probes 2015 Qiu, Hao (LBNL)

STAR * Open charm production in U+U

- R_{AA} similar trend in U+U collisions as in Au+Au collisions
- Both consistent with pion suppression at high $\ensuremath{p_{\text{T}}}$

Hard Probes 2015

Open charm production in U+U

• Suppression of open charm at high p_T in U+U collisions is similar to and extends the trend as that of open charm and pions in Au+Au collisions.

Heavy Flavor Tracker

- Reconstruct displaced decay vertices to greatly reduce combinatorial background
- Challenge: short decay, e.g. D⁰ cτ ~ 120 μm
- Successfully commissioned in 2014

STAR A HFT design and performance

Silicon Strip Detector: r ~ 22 cm Intermediate Silicon Tracker: r ~ 14 cm PIXEL detector: r ~ 2.8 & 8.2 cm

- Monolithic Active Pixel Sensors
 - used in a collider experiment for the first time
 - 20.7 μ m pixel pitch $\Rightarrow \sigma = 7.8 \mu$ m considering vibration
 - thinned down to 50 µm -
- light carbon fiber support
- air cooled

DCA resolution for tracks with TPC + HFT hits

- ~ 30 μ m at high p_T
- Better than the project goal: 60 µm for kaon with p = 750 MeV/c

Hard Probes 2015

D⁰ signal with HFT

Summary

- D⁰/D* differential production cross-section in 200 and 500 GeV p+p collisions is consistent with FONLL calculations within uncertainties.
- Significant suppression at high p_T and indication of enhancement at p_T~0.7-2 GeV/c are observed for D⁰ production in both Au+Au and U+U collisions, which can be described by model calculations with strong charm-medium interaction and coalescence hadronization.
- STAR HFT has been commissioned successfully in Run14, D⁰ significance enhanced tremendously. Physics results on HF energy loss, collectivity and more will come soon.

Thank you