Heavy Flavor Measurements from STAR Sooraj Radhakrishnan (for the STAR Collaboration) Lawrence Berkeley National Laboratory ## Heavy quarks as probes of QGP - Produced in initial hard scatterings, not thermally, in HIC at RHIC. - Production cross-sections amenable to pQCD calculations - → Ideal probes of the QGP ### **Energy Loss** - D, B meson R_{AA} and R_{CP} - Collisional and radiative energy loss ### **Transport** - D⁰ V₂, V₃ - c quark diffusion coefficient in QGP #### **Initial conditions** - D⁰ directed flow - Initial B-field, initial conditions in longitudinal direction #### **Hadronization** - ∧_c, D_s production - · Coalescence? - Ideal probes as total c quark is fixed at initial scatterings ## STAR Heavy Flavor Tracker lets at the LIK - 2 layers of Si pixels with MAPS and 2 layers of Si strips - Full azimuthal coverage, lηl < 1 - Excellent track pointing resolution - Topological reconstruction of charm hadron decays - Vastly improved signal significances (eg: by factor of 15 for D⁰) Phys. Rev. Lett. 118 (2017) 212301 ### Energy loss: D⁰ R_{AA} and R_{CP} - Strong suppression of high p_T D⁰ in central Au+Au collisions - Strong interactions and energy loss of c quarks with QGP - Comparable to that seen for light flavor hadrons at high p_T, less at intermediate p_T (3-6 GeV/c) - Model calculations can reproduce large suppression at high p_T - Include both collisional and radiative energy losses, both important in p_T ~ 3 - 10 GeV/c for c quarks STAR: Phys Rev C.99.034908 (2019) - Precision better for R_{CP} - Better constraints on model calculations - High p_T suppression increase towards central events - No strong centrality dependence at low p_T - Also seen from cross-section plots - Total D⁰ cross-section is lower than in p+p collisions STAR: Phys Rev C.99.034908 (2019) ALICE Collaboration, JHEP 1810 (2018) 174 - ALICE Collaboration, JHEP 1810 (2018) 174 - Complementary to D⁰ measurements - No modification to D+/-/D⁰ and D*/D⁰ yield ratios compared to PYTHIA - Indicates similar R_{AA} as for D⁰ - Similar observation from measurements at LHC Jets at the LHC - How about bottom? - Mass hierarchy: radiative energy loss expected to be smaller for bottom - Template fits to single electron DCA to extract e_D and e_B fractions - Indication of higher R_{AA} for $B \rightarrow e$, compared to $D \rightarrow e$ (~2 sigma effect) - Better precision measurements with full 2014+2016 data on the way! ## Transport: D⁰ elliptic low STAR Published results from 2014: Phys. Rev. Lett. 118 (2017) 212301 - Combined results from 2014+2016 data, improved precision - Large magnitude of elliptic flow for D⁰ mesons, comparable to that of light flavor hadrons - Shows NCQ scaling - Suggests charm quarks acquire similar flow as light flavor quarks ## Transport: D⁰ v₂, model comparisons SUBATECH: PhysRevC 90, 054909 (2014), PhysRevC 92, 014910 (2015) TAMU: PhysRevC 86, 014903 (2012), PhysRevLett110, 112301 (2013) Duke: PhysRevC 92, 024907 (2015) 3D viscoushydro: PhysRevC 86, 024911 (2012) LBT: PhysRevC 94, 014909 (2016) PHSD: PhysReV90, 051901 (2014), PhysReV90, 051901 (2014) Catania: PhysReV96, 044905 (2017) - Transport models with charm quark diffusion in the medium can describe the data - $\, \cdot \,$ Value of diffusion coefficient well constrained by data around T_c ## Directed flow of Do mesons: Initial geometry Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018) - Initial conditions in longitudinal direction: important for accurate modeling of HIC - Tilted source for QGP bulk: explains light flavor v₁ - Charm quark production profile follows that of binary collisions, symmetric in rapidity - Induces v₁ for charm quarks - Magnitude depends on viscous drag on charm quarks and initial tilt of QGP bulk - D⁰ v₁ predicted to be order of magnitude larger than light flavor hadron v₁ ### Directed flow of D⁰ mesons: B field Das et. al., Phys Lett B 768, 260 (2017), Chatterjee, Bojek: arXiv1804.04893v1 - Also, strong magnetic fields during initial stages! - Induces opposite sign v₁ for c and cbar quarks - Model calculations predict a charge dependent split for D⁰ and anti-D⁰ v1 - Predicted difference is also order of magnitude larger than the effect for light flavor hadrons, as latter has large thermal production contribution during medium evolution STAR: arXiv:1905.02052, Submitted to PRL - Measured D⁰ v₁ slope, ~5-20 times larger than that for kaons - Hydro models show correct sign and large magnitude, but under-predicts the data - AMPT also predicts large magnitude ### Directed flow of D⁰ mesons STAR: arXiv:1905.02052, Submitted to PRL - Measured D⁰ v₁ slope, ~5-20 times larger than that for kaons - Hydro models show correct sign and large magnitude, but under-predicts the data - Can help constrain model parameters ### Directed flow of D⁰ mesons - Measured D⁰ v₁ slope, ~5-20 times larger than that for kaons - Models show correct sign and large magnitude, but under-predicts the data - Consistent values for D⁰ and anti-D⁰ - Within the precision no EM field impact seen STAR: arXiv:1905.02052, Submitted to PRL - Help understand charm quark hadronization - Coalescence hadronization can become important for c quarks in presence of QGP - Significant enhancement of ∧_c/D⁰ yield ratio relative to PYTHIA values predicted - Also important towards the understanding of charm quark energy loss in the QGP Ko: PRC 79 (2009) 044905 Greco: PRD 90 (2014) 054018 SHM: PRC 79 (2009) 044905 ALICE: JHEP04(2018)108 - Enhancement relative to PYTHIA seen in p+p and p+Pb collisions at LHC - MPI with CR also under-predict - What is the centrality dependence in HIC? lets at the LHC - Very short life time (cτ ~ 60 µm), large combinatorial background - Machine learning methods applied to further improve the signal significance for Λ_{c} reconstruction - More than 50% improvement in signal significance with TMVA BDT. - Also new data from 2016 —> Effectively 4x more data compared to QM17 ### Λ_c/D⁰ ratio: p_T dependence - Strong enhancement of \(\cappa_c/D^0\) yield ratio, compared to PYTHIA calculations in measured p⊤ region - Enhancement increases towards more central events - Models with coalescence hadronization of c quarks qualitatively describe the enhancement and p_{T} dependence ## Λ_c/D⁰ ratio: p_T and centrality dependence - Strong enhancement of \(\cappa_c/D^0\) yield ratio, compared to PYTHIA calculations in measured p_T region - p_T integrated values (extrapolation with coalescence models) also larger than SHM calculations - Lower p_T measurements can provide further understanding D_s/D⁰ enhancement expected in central A+A collisions, from strangeness enhancement and coalescence hadronization Coalescence model calculations show enhancement, but under-predict the measured values > ep/pp/ep avg: M Lisovyi, et. al. EPJ C 76, 397 (2016) TAMU: H. Min et al. PRL 110, 112301 (2013) SHM: A. Andronic et al., PLB 571 (2003) 36 - Total charm cross-section is extracted from the various charm hadron measurements - D⁰ yields are measured down to zero p_T - For D+/-, and D_s, Levy (power law) fits to measured spectra are used for extrapolation (systematics). - For ∧_c, three model fits to data are used and differences are included in systematics | Charm Hadron | | Cross Section dσ/dy (μb) | |---------------------------|---------------|--------------------------| | Au+Au 200 GeV
(10-40%) | D^0 | 41 ± 1 ± 5 | | | $D^{^{+}}$ | 18 ± 1 ± 3 | | | D_s^+ | 15 ± 1 ± 5 | | | Λ_c^+ | 78 ± 13 ± 28 * | | | Total | 152 ± 13 ± 29 | | p+p 200 GeV | Total | 130 ± 30 ± 26 | ^{*} derived using Λ_c^+/D^0 ratio in 10-80% p+p: Phys Rev Lett.121.229901 Total per-nucleon charm cross-section in A+A is consistent with p+p value within uncertainties. ### Energy loss: - Strong suppression of D mesons at high p_T, comparable to that of light hadrons - Indication of less suppression of B -> e compared to that for D -> e #### Transport: - Charm quarks seem to acquire similar flow as light flavor quarks - Diffusion coefficient well constrained by data at T=T_c #### Initial conditions: - D⁰ v₁ order of magnitude larger than v₁ of light flavor hadrons - Constraints for medium tilt and charm quark viscous drag - Consistent values for both D⁰ and anti-D⁰ #### Hadronization: - Coalescence hadronization plays an important role at intermediate p_T (2-8 GeV/c) - Total per-nucleon charm cross section consistent with p+p, but hadrochemistry significantly modified # Back Up