

Heavy Flavor Measurements from STAR

Sooraj Radhakrishnan (for the STAR Collaboration)
Lawrence Berkeley National Laboratory

Heavy quarks as probes of QGP

- Produced in initial hard scatterings, not thermally, in HIC at RHIC.
- Production cross-sections amenable to pQCD calculations
 - → Ideal probes of the QGP

Energy Loss

- D, B meson R_{AA}
 and R_{CP}
- Collisional and radiative energy loss

Transport

- D⁰ V₂, V₃
- c quark diffusion coefficient in QGP

Initial conditions

- D⁰ directed flow
- Initial B-field, initial conditions in longitudinal direction

Hadronization

- ∧_c, D_s production
- · Coalescence?
- Ideal probes as total c quark is fixed at initial scatterings

STAR Heavy Flavor Tracker

lets at the LIK

- 2 layers of Si pixels with MAPS and
 2 layers of Si strips
- Full azimuthal coverage, lηl < 1

- Excellent track pointing resolution
- Topological reconstruction of charm hadron decays
- Vastly improved signal significances (eg: by factor of 15 for D⁰)

Phys. Rev. Lett. 118 (2017) 212301

Energy loss: D⁰ R_{AA} and R_{CP}

- Strong suppression of high p_T D⁰ in central Au+Au collisions
 - Strong interactions and energy loss of c quarks with QGP
- Comparable to that seen for light flavor hadrons at high p_T, less at intermediate p_T (3-6 GeV/c)
- Model calculations can reproduce large suppression at high p_T
 - Include both collisional and radiative energy losses, both important in p_T ~ 3 - 10 GeV/c for c quarks

STAR: Phys Rev C.99.034908 (2019)

- Precision better for R_{CP}
- Better constraints on model calculations

- High p_T suppression increase towards central events
- No strong centrality dependence at low p_T
- Also seen from cross-section plots
- Total D⁰ cross-section is lower than in p+p collisions

STAR: Phys Rev C.99.034908 (2019)

ALICE Collaboration, JHEP 1810 (2018) 174

- ALICE Collaboration, JHEP 1810 (2018) 174
- Complementary to D⁰ measurements
- No modification to D+/-/D⁰ and D*/D⁰ yield ratios compared to PYTHIA
- Indicates similar R_{AA} as for D⁰
- Similar observation from measurements at LHC

Jets at the LHC

- How about bottom?
- Mass hierarchy: radiative energy loss expected to be smaller for bottom

- Template fits to single electron DCA to extract e_D and e_B fractions
- Indication of higher R_{AA} for $B \rightarrow e$, compared to $D \rightarrow e$ (~2 sigma effect)
- Better precision measurements with full 2014+2016 data on the way!

Transport: D⁰ elliptic low

STAR Published results from 2014: Phys. Rev. Lett. 118 (2017) 212301

- Combined results from 2014+2016 data, improved precision
- Large magnitude of elliptic flow for D⁰ mesons, comparable to that of light flavor hadrons
 - Shows NCQ scaling
 - Suggests charm quarks acquire similar flow as light flavor quarks

Transport: D⁰ v₂, model comparisons

SUBATECH: PhysRevC 90, 054909 (2014), PhysRevC 92, 014910 (2015) TAMU: PhysRevC 86, 014903 (2012), PhysRevLett110, 112301 (2013)

Duke: PhysRevC 92, 024907 (2015)

3D viscoushydro: PhysRevC 86, 024911 (2012)

LBT: PhysRevC 94, 014909 (2016) PHSD: PhysReV90, 051901 (2014), PhysReV90, 051901 (2014) Catania: PhysReV96, 044905 (2017)

- Transport models with charm quark diffusion in the medium can describe the data
- $\, \cdot \,$ Value of diffusion coefficient well constrained by data around T_c

Directed flow of Do mesons: Initial geometry

Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)

- Initial conditions in longitudinal direction: important for accurate modeling of HIC
- Tilted source for QGP bulk: explains light flavor v₁
- Charm quark production profile follows that of binary collisions, symmetric in rapidity
- Induces v₁ for charm quarks
- Magnitude depends on viscous drag on charm quarks and initial tilt of QGP bulk
- D⁰ v₁ predicted to be order of magnitude larger than light flavor hadron v₁

Directed flow of D⁰ mesons: B field

Das et. al., Phys Lett B 768, 260 (2017), Chatterjee, Bojek: arXiv1804.04893v1

- Also, strong magnetic fields during initial stages!
 - Induces opposite sign v₁ for c and cbar quarks
 - Model calculations predict a charge dependent split for D⁰ and anti-D⁰ v1
- Predicted difference is also order of magnitude larger than the effect for light flavor hadrons, as latter has large thermal production contribution during medium evolution

STAR: arXiv:1905.02052, Submitted to PRL

- Measured D⁰ v₁ slope, ~5-20 times larger than that for kaons
- Hydro models show correct sign and large magnitude, but under-predicts the data
- AMPT also predicts large magnitude

Directed flow of D⁰ mesons

STAR: arXiv:1905.02052, Submitted to PRL

- Measured D⁰ v₁ slope, ~5-20 times larger than that for kaons
- Hydro models show correct sign and large magnitude, but under-predicts the data
- Can help constrain model parameters

Directed flow of D⁰ mesons

- Measured D⁰ v₁ slope, ~5-20 times larger than that for kaons
- Models show correct sign and large magnitude, but under-predicts the data

- Consistent values for D⁰ and anti-D⁰
- Within the precision no EM field impact seen

STAR: arXiv:1905.02052, Submitted to PRL

- Help understand charm quark hadronization
 - Coalescence hadronization can become important for c quarks in presence of QGP
 - Significant enhancement of ∧_c/D⁰ yield ratio relative to PYTHIA values predicted
- Also important towards the understanding of charm quark energy loss in the QGP

Ko: PRC 79 (2009) 044905 Greco: PRD 90 (2014) 054018 SHM: PRC 79 (2009) 044905

ALICE: JHEP04(2018)108

- Enhancement relative to PYTHIA seen in p+p and p+Pb collisions at LHC
- MPI with CR also under-predict
- What is the centrality dependence in HIC?

lets at the LHC

- Very short life time (cτ ~ 60 µm), large combinatorial background
- Machine learning methods applied to further improve the signal significance for Λ_{c} reconstruction

- More than 50% improvement in signal significance with TMVA BDT.
- Also new data from 2016 —> Effectively 4x more data compared to QM17

Λ_c/D⁰ ratio: p_T dependence

- Strong enhancement of \(\cappa_c/D^0\) yield ratio, compared to PYTHIA calculations in measured p⊤ region
 - Enhancement increases towards more central events
 - Models with coalescence hadronization of c quarks qualitatively describe the enhancement and p_{T} dependence

Λ_c/D⁰ ratio: p_T and centrality dependence

- Strong enhancement of \(\cappa_c/D^0\) yield ratio, compared to PYTHIA calculations in measured p_T region
 - p_T integrated values (extrapolation with coalescence models) also larger than SHM calculations
 - Lower p_T measurements can provide further understanding

 D_s/D⁰ enhancement expected in central A+A collisions, from strangeness enhancement and coalescence hadronization

 Coalescence model calculations show enhancement, but under-predict the measured values

> ep/pp/ep avg: M Lisovyi, et. al. EPJ C 76, 397 (2016) TAMU: H. Min et al. PRL 110, 112301 (2013)

SHM: A. Andronic et al., PLB 571 (2003) 36

- Total charm cross-section is extracted from the various charm hadron measurements
 - D⁰ yields are measured down to zero p_T
 - For D+/-, and D_s, Levy (power law) fits to measured spectra are used for extrapolation (systematics).
 - For ∧_c, three model fits to data are used and differences are included in systematics

Charm Hadron		Cross Section dσ/dy (μb)
Au+Au 200 GeV (10-40%)	D^0	41 ± 1 ± 5
	$D^{^{+}}$	18 ± 1 ± 3
	D_s^+	15 ± 1 ± 5
	Λ_c^+	78 ± 13 ± 28 *
	Total	152 ± 13 ± 29
p+p 200 GeV	Total	130 ± 30 ± 26

^{*} derived using Λ_c^+/D^0 ratio in 10-80% p+p: Phys Rev Lett.121.229901

 Total per-nucleon charm cross-section in A+A is consistent with p+p value within uncertainties.

Energy loss:

- Strong suppression of D mesons at high p_T, comparable to that of light hadrons
- Indication of less suppression of B -> e compared to that for D -> e

Transport:

- Charm quarks seem to acquire similar flow as light flavor quarks
- Diffusion coefficient well constrained by data at T=T_c

Initial conditions:

- D⁰ v₁ order of magnitude larger than v₁ of light flavor hadrons
- Constraints for medium tilt and charm quark viscous drag
- Consistent values for both D⁰ and anti-D⁰

Hadronization:

- Coalescence hadronization plays an important role at intermediate p_T (2-8 GeV/c)
- Total per-nucleon charm cross section consistent with p+p, but hadrochemistry significantly modified

Back Up

