

Low $p_T e^+e^-$ pair production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at STAR

Shuai Yang (for the STAR Collaboration)

Brookhaven National Laboratory

Outline

Motivation

- The STAR experiment
- Electron identification
- \blacktriangleright Low $p_T e^+e^-$ pair results in Au+Au and U+U collisions
- > Isobaric collisions ($^{96}_{44}$ Ru vs. $^{96}_{40}$ Zr)
- Summary

Dilepton - penetrating probe of hot medium

Do not suffer strong interactions
Bring direct information of the medium created in heavy ion collisions

Different physics of interest

- Low Mass Region (LMR)
 - In-medium modifications of vector meson
- Intermediate Mass Region (IMR)
 - QGP thermal radiation
 - Semi-leptonic decays of $c\overline{c}$
- High Mass Region (HMR)
 - Drell-Yan process
 - Heavy quarkonia

Consistent with a theoretical calculation based on broadened **ρ** spectral function [*R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253*]

09/01/2017

Low $p_T J/\psi$ enhancement in peripheral heavy-ion collisions

> Significant enhancement at low p_T in peripheral collisions

- Can not be explained by hadronic production accompanied with the cold and hot medium effects
- Linked to coherent photoproduction? How to incorporate coherence conditions?

$$R_{AA} = rac{\sigma_{pp}^{inel.}}{< N_{coll} >} rac{d^2 N_{AA} / (2\pi p_T dp_T dy)}{d^2 \sigma_{pp} / (2\pi p_T dp_T dy)}$$

Shuai Yang, PANIC 2017

09/01/2017

Low $p_T J/\psi$ enhancement in peripheral heavy-ion collisions

> Significant enhancement at low p_T in peripheral collisions

- Can not be explained by hadronic production accompanied with the cold and hot medium effects
- Linked to coherent photoproduction? How to incorporate coherence conditions?
- Measure e⁺e⁻ pair production in a wider invariant mass region at low p_T to understand the production mechanism 09/01/2017 Shuai Yang, PANIC 2017 6

Photon interactions in Ultra-Peripheral Collisions (UPC)

ightarrow Photon – photon interaction ightarrow Z⁴

 \geq Photon – nucleus interaction $\propto Z^2$

- Coherent: photon interacts with the whole nucleus
- Incoherent: photon interacts with nucleon or parton individually

Features of photon interactions in UPC

Coherent photon – nucleus interaction

- Both nucleus remain intact
- Vector meson p_T is very low -
- Interference structure
 - ✓ Emitter and target are indistinguishable
 - ✓ Vector mesons have negative parity, thus opposite sign in amplitude
 - ✓ Destructive interference in $p_T << 1/b^{---}$
- Photon photon interaction
 - Continuum
 - Pair p_T is very lower

10⁵ Signal Background 0.8 0.9 ππ pair p [GeV/c 0.4 0.5 0.6 mb/(GeV/c)²] 10^{3} 10² 0.002 0.003 10 -t [(GeV/c)2] ^{-bt} fit XnXn ^{bt} fit 1n1r XnXn 1n1n 10 0.05 0.1

TAR, arxiv: 1702.07705

09/01/2017

Shuai Yang, PANIC 2017

-t [(GeV/c)2]

The STAR detector

Time Projection Chamber

- |η|<1, 0<φ<2π
- Main detector: tracking, momenta, and energy loss

Time Of Flight

- |η|<0.9, 0<φ<2π
- Enables clean electron identification at p < 3 GeV/c

Electron identification

➤The overall purity of electron, identified by combining of TPC and TOF, is ~95% in minimum bias Au+Au (U+U) collisions

09/01/2017

Shuai Yang, PANIC 2017

Centrality dependence of e^+e^- pair invariant mass spectra in $p_T < 0.15$ GeV/c STAR

Significant enhancement with respect to the cocktail in 60-80% central Au+Au and U+U collisions

Enhancement factor (data/cocktail) decreases from peripheral to central collisions

09/01/2017

Enhancement spectra in $p_T < 0.15$ GeV/c

 Can not be explained by broadened p model calculation
Need additional source(s) to account for the significant enhancement

09/01/2017

Centrality dependence of excess yield

Possible sources – photon interactions

Photon – photon interaction (continuum)

• Coherent photon – nucleus interaction (vector mesons) 09/01/2017 Shuai Yang, PANIC 2017

p_T spectra in 60-80% central collisions

 \geq Excess entirely happens in p_T < ~0.15 GeV/c

> Data are consistent with hadronic expectation when $p_T > \sim 0.15$ GeV/c

p_T spectra in 60-80% central collisions

p_T^2 distributions in 60-80% central collisions

> Slope has a mild invariant mass and collision species dependence

- Au+Au vs. U+U: 2.2σ in 0.4-0.76 GeV/c², 1.8σ in 0.76-1.2 GeV/c², 1.4σ in 1.2-2.6 GeV/c²
- 0.4-0.76 vs. 1.2-2.6 GeV/c²: 1.7 σ in Au+Au collisions, 1.0 σ in U+U collisions

09/01/2017

Shuai Yang, PANIC 2017

STAR

Isobaric collisions at RHIC in 2018

- All aforementioned very low p_T e⁺e⁻ measurements point to photon mediated interactions in violent hadronic A+A collisions.
- How to quantitatively disentangle the contributions from photon-photon, photon-nucleus processes?
 - Photon-photon interaction $\propto Z^4$
 - Photon-nuclear interaction $\propto Z^2$
- $> \frac{96}{44}$ Ru vs. $\frac{96}{40}$ Zr
 - Charge different by 10%, everything else almost the same
 - Z⁴ difference: 46%; Z² difference: 21%;
 - 1.2 billion events for each particle species
 - Good opportunity to quantitatively disentangle photon interaction contributions for the observed low $p_T \ e^+e^-$ excess

Summary

- A significant enhancement with respect to the hadronic cocktail is observed at very low p_{T}
 - Entirely happens in $p_T < \sim 0.15 \text{ GeV/c}$
 - Can not be explained by QGP radiation and broadening of vector meson inmedium
 - Excess yield has no obvious centrality dependence
- $\geq p_T^2$ distributions of STAR acceptance corrected excess yield in several mass differentials are measured in 60-80% central A+A collisions
 - The slope of p_T^2 distribution has mild invariant mass and collision species dependence
- The observed significant enhancement in hadronic A+A collisions is very likely mediated by photon interactions
 - Isobaric collisions may quantitatively disentangle the contributions from photon-photon and photon-nucleus processes. 09/01/2017 Shuai Yang, PANIC 2017