

Measurements of Global and Local Polarization

of Hyperons in Heavy Ion Collisions from STAR

Xingrui Gou (for the STAR Collaboration)

Shandong University

PacificSpin2024

2024/11/8 - 13 China·Hefei

Supported in part by

□ Brief introduction on orbital angular momentum and polarization

Global polarization analysis process

□ Recent STAR experiment results

- Hyperon global polarization
- Hyperon polarization along beam direction

□ Summary

Orbital angular momentum and polarization

Orbital angular momentum

Leads to global polarization along *L* though spin-orbit coupling

Z.-T. Liang and X.-N. Wang, PRL 94, 102301 (2005)

Global polarization measurement

STAR

"Self-analyzing", parity-violating weak decay channel of hyperons
Daughter baryon is preferentially emitted in the direction of the hyperon spin

 $\frac{\mathrm{d}N}{\mathrm{d}\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H P_H \cos\theta^*\right)$

 α_H : hyperon decay parameter P_H : hyperon polarization θ^* : polarization angle

 $\Lambda \rightarrow p + \pi^{-}$ (BR:63.9%,c τ ~7.9cm)

□ "Self-analyzing", parity-violating weak decay channel of hyperons

Daughter baryon is preferentially emitted in the direction of the hyperon spin

Measured via the distribution of the azimuthal angle of the
hyperon decay baryon (in the hyperon rest frame) with respect
to the reaction plane.

$$P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{1}{A_0} \frac{\left\langle \sin(\Psi_1 - \phi_p^*) \right\rangle}{Res(\Psi_1)}$$

 $\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}} = 0.732 \pm 0.014$ A_0 : Acceptance correction factor Ψ_1 : First-order event plane angle $Res(\Psi_1)$: Event plane resolution STAR, PRC76, 024915 (2007)

 $\Lambda \rightarrow p + \pi^{-}$ (BR:63.9%,c τ ~7.9cm)

STAR detector and event plane reconstruction

Event plane resolution

Event plane reconstruction:

- Time Projection Chamber
- Event Plane Detector
- Zero Degree Calorimeters

STAR detector and $\Lambda/\overline{\Lambda}$, $\Xi^-/\overline{\Xi}^+$ reconstruction

Acta Phys. Sin. Vol. 72, No. 7(2023) 072401

- \square STAR, first measurement in AuAu 200 GeV, $P_H < 2\%$ PRC 76, 024915 (2007) □ STAR, first observation in BES-I Nature 548, 62 (2017) \square STAR, high precise P_H at 200 GeV PRC 90, 014910 (2018) □ ALICE, LHC energy region PRC 101, 044611 (2020) \square STAR, P_H at 3 GeV PRC 104, L061901 (2021) □ HADES energy region, consistent with STAR PLB 835,137506(2022)
- ► Possible difference between Λ and $\overline{\Lambda}$ due to magnetic field effect?
 - □ STAR, P_H at 19.6 and 27 GeV BES-II, no splitting PRC108,014910(2023)
 - □ STAR, new results
 - Λ , Ξ global polarization

Acta Phys. Sin. Vol. 72, No. 7(2023) 072401

- Significant collision energy dependence, described well by various theoretical models
 - Liang and Wang, PRL 94,102301(2005),
 - Gao, Chen, Deng, Liang, Wang, Wang, PRC 77, 044902(2008)
 - I. Karpenko and F. Becattini, EPJC(2017)77:213, UrQMD+vHLLE
 - H. Li et al., PRC 96, 054908 (2017), AMPT
 - Becattini, Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020).
 - Huang, Liao, Wang, Xia, Lect. Notes Phys. 987, 281 (2021).
 - Becattini, Rept. Prog. Phys. 85, No.12, 122301 (2022)
 - Wang, Liang, Ma, ActaPhys. Sin. 72, No. 7 & 11 (2023)
 - Lv, Yu, Liang, Wang, Wang, PRD 109 (2024) 11, 114003
 - Zhang, Lv, Yu, Liang, 2406.03840(2024)
 - Sun, et al., 2405.12015(2024).

Energy dependence of Λ global polarization

BES-I (2010-2017) and BES-II (2018-2021) statistics

□ Greatly improved precision from Beam Energy Scan phase-II at 7.7, 9.2, 11.5, 14.6, 17.3 GeV

Energy dependence of Λ global polarization : from BES-II

□ New STAR preliminary results at $\sqrt{s_{NN}} = 7.7-17.3$ GeV from BES-II

Significant improvement in precision was achieved, collision energy dependence consistent with BES-I

Xingrui Gou @ PacificSpin2024

Splitting of Λ and $\overline{\Lambda}$ global polarization : from BES-II

\Box No obvious splitting between Λ and $\overline{\Lambda}$ global polarization with high precision

Upper limit on late stage magnetic field

- 95% confidence level STAR, PRC 108,014910(2023)
- $B < 9.4 \times 10^{12} T$ at 19.6 GeV
- $B < 1.4 \times 10^{13} T$ at 27 GeV

System size dependence of Λ global polarization

S. Alzhrani et al., PRC 106.014905

□ Longer system lifetime dilutes the vorticity/polarization Collision system size dependence of global polarization? $^{197}_{79}Au > ^{96}_{44}Ru, ^{96}_{40}Zr > ^{63}_{29}Cu > ^{16}_{8}O$ $P_{\Lambda}^{Au} < P_{\Lambda}^{Ru} \approx P_{\Lambda}^{Zr} < P_{\Lambda}^{Cu} < P_{\Lambda}^{O}$

Measurements of Λ global polarization in isobar collisions

Significant global polarization observed in isobar collisions, P_Λ and P_{Λ̄} increase with centrality
Global polarization of Λ + Λ̄ are consistent between Ru+Ru, Zr+Zr and Au+Au collisions within uncertainty

$\Xi^- + \overline{\Xi}^+$ global polarization measurement

 \square Possible difference between Ξ global polarization and Λ due to earlier production and vorticity evolution

Two measurement methods

- Via daughter Λ angle distribution in Ξ rest frame
- Via daughter Λ polarization with spin transfer factor($C_{\Xi^- \to \Lambda} = 0.944$)

$\Xi^- + \overline{\Xi}^+$ global polarization measurement

 \square Possible difference between Ξ global polarization and Λ due to earlier production and vorticity evolution

□ Two measurement methods

- Via daughter Λ angle distribution in Ξ rest frame
- Via daughter Λ polarization with spin transfer factor($C_{\Xi^- \rightarrow \Lambda} = 0.944$)

Spin

1/2

1/2

PDG2021

□ Significant $\Xi^- + \overline{\Xi}^+$ global polarization observed in Au+Au at 19.6 and 27 GeV □ $\Xi^- + \overline{\Xi}^+$ global polarization measurement at lower BES-II energies underway

Local vorticity and polarization in heavy ion collisions

□ Elliptic flow indicates stronger expansion in-plane than out of plane

 \Rightarrow Lead to polarization along the beam direction (P_z)

 $\langle \cos \theta_p^* \rangle = \int \frac{dN}{d\Omega^*} \cos \theta_p^* d\Omega^*$ $= \alpha_\Lambda P_Z \langle (\cos \theta_p^*)^2 \rangle$ $P_Z = \frac{\langle \cos \theta_p^* \rangle}{\alpha_\Lambda \langle (\cos \theta_p^*)^2 \rangle}$

□ Clear azimuthal angle dependence observed in Au+Au and isobar collisions at 200 GeV

□ Clear azimuthal angle dependence observed in Au+Au and isobar collisions at 200 GeV □ New developments, Shear Induced Polarization(SIP), may solve the ' P_z puzzle'

System size dependence of P_z

 $\square P_z \text{ from isobar collision comparable to Au+Au and Pb+Pb}$

 $\checkmark\,$ No significant system size dependence observed at same energy

Measurements of P_z with BES-II

□ First measurements of P_z in Au+Au collisions from 7.7 to 27 GeV with BES-II

 \checkmark No significant collision energy dependence observed

P_z from higher harmonic flow

Measurements P_z relative to higher harmonic event planes provide new insights into polarization phenomena

P_z from higher harmonic flow

\square First observation of P_z w.r.t the third-order event plane

- \square Significant P_z w.r.t third-order event plane observed
- $\square P_z \text{ w.r.t second-order event plane increases with centrality}$
- Comparable P_z w.r.t second and third order event plane, indicating v_3 -driven polarization
- Hydrodynamic models with shear term reasonably describe the data for central collisions, but not for peripheral collisions

S. Alzhrani et al., PRC 106.014905

SHE driven by baryon chemical potential gradient, leads to the splitting $P_{2,z} = \langle P_z \sin(2\Delta \phi) \rangle$ $P_{2,z}^{net} = P_{2,z}(\Lambda) - \overline{P_{2,z}}(\Lambda)$ between Λ and $\overline{\Lambda}$ polarization

 \square Prediction of collision energy dependence of net- Λ polarization

 $\Delta \phi = \phi_{\Lambda} - \psi_2$

D SHE driven by baryon chemical potential gradient, leads to the splitting between Λ and $\overline{\Lambda}$ polarization

- \square Prediction of collision energy dependence of net- Λ polarization
- □ No SHE effect observed within uncertainty

Summary

Global polarization

- □ Significant improvement in precision was achieved in BES-II
- No splitting observed between Λ and $\overline{\Lambda}$ global polarization in Au+Au collisions at 7.7 27 GeV and $^{96}_{44}$ Ru + $^{96}_{44}$ Ru, $^{96}_{40}$ Zr + $^{96}_{40}$ Zr collisions at 200 GeV
- □ Significant $\Xi^- + \overline{\Xi}^+$ global polarization observed at 19.6, 27 GeV, measurements in lower energies underway
- □ No collision system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

Polarization along beam direction (P_z)

- \square First observation of P_z w.r.t third-order event plane
- \square First measurements of P_z in Au+Au collisions from 7.7 to 27 GeV with BES-II
- □ No spin Hall effect observed within uncertainty

Summary

Global polarization

- □ Significant improvement in precision was achieved in BES-II
- No splitting observed between Λ and $\overline{\Lambda}$ global polarization in Au+Au collisions at 7.7 27 GeV and $^{96}_{44}$ Ru + $^{96}_{44}$ Ru, $^{96}_{40}$ Zr + $^{96}_{40}$ Zr collisions at 200 GeV
- □ Significant $\Xi^- + \overline{\Xi}^+$ global polarization observed at 19.6, 27 GeV, measurements in lower energies underway
- No collision system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Constraint of the system size dependence between Ru+Ru, Zr+Zr and Au+Au collisions at 200 GeV

 Image: Co

D First chargestick of **D** are stablind and successful a

- \square First observation of P_z w.r.t third-order event plane
- □ First measurements of P_z in Au+Au collisions from 7.7 to 27 GeV with BES-II
- □ No spin Hall effect observed within uncertainty

Global polarization collision energy dependence

Significant global polarization centrality dependence observed
Lambda and Anti-Lambda global polarization are consistent
No observed dependence of global polarization on *p_T*

2024/11/10

Xingrui Gou @ PacificSpin2024

STAR, PRC 108, 014910 (2023)

STAR detector and $\Lambda/\overline{\Lambda}$ reconstruction

- \square Local polarization p_T dependence is observed
- □ Observed p_T dependence similar to that of elliptic (v_2) and triangular (v_3) flow
- Results are consistent between isobar and Au+Au collisions

\square No splitting of $\Lambda / \overline{\Lambda}$ observed

Au+Au	19.6 GeV	27 GeV
$\begin{array}{c} P_{\overline{\Lambda}} - P_{\Lambda} \\ (\%) \end{array}$	-0.018 $\pm 0.127(stat.)$ $\pm 0.024(sys.)$	0.109 ±0.118(stat.) ± 0.022(sys.)

$\square |B| \approx \frac{T_s |P_{\overline{\Lambda}} - P_{\Lambda}|}{2|\mu_A|}, \text{ using hydrodynamics}$

 $T_s = 150 \text{ MeV}$: the temperature of the emitting source $\mu_A = -1.93 \times 10^{-14} \text{ MeV/T}$: the magnetic moment of the Λ hyperon

Upper limit on late stage magnetic field

- 95% confidence level
- $B < 9.4 \times 10^{12} T$ at 19.6 GeV
- $B < 1.4 \times 10^{13} T$ at 27 GeV